10,411 research outputs found

    SOLACE: A framework for electronic negotiations

    Get PDF
    Copyright @ 2011 Walter de Gruyter GmbHMost existing frameworks for electronic negotiations today are tied to specific negotiation systems for which they were developed, preventing them from being applied to other negotiation scenarios. Thus, the evaluation of electronic negotiation systems is difficult as each one is based on a different framework. Additionally, each developer has to design a new framework for any system to be developed, leading to a ‘reinvention of the wheel’. This paper presents SOLACE—a generic framework for multi-issue negotiations, which can be applied to a variety of negotiation scenarios. In contrast with other frameworks for electronic negotiations, SOLACE supports hybrid systems in which the negotiation participants can be humans, agents or a combination of the two. By recognizing the importance of strategies in negotiations and incorporating a time attribute in negotiation proposals, SOLACE enhances existing approaches and provides a foundation for the flexible electronic negotiation systems of the future

    Efficient Methods for Automated Multi-Issue Negotiation: Negotiating over a Two-Part Tariff

    No full text
    In this article, we consider the novel approach of a seller and customer negotiating bilaterally about a two-part tariff, using autonomous software agents. An advantage of this approach is that win-win opportunities can be generated while keeping the problem of preference elicitation as simple as possible. We develop bargaining strategies that software agents can use to conduct the actual bilateral negotiation on behalf of their owners. We present a decomposition of bargaining strategies into concession strategies and Pareto-efficient-search methods: Concession and Pareto-search strategies focus on the conceding and win-win aspect of bargaining, respectively. An important technical contribution of this article lies in the development of two Pareto-search methods. Computer experiments show, for various concession strategies, that the respective use of these two Pareto-search methods by the two negotiators results in very efficient bargaining outcomes while negotiators concede the amount specified by their concession strategy

    KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development

    Get PDF
    Automated negotiation is widely applied in various domains. However, the development of such systems is a complex knowledge and software engineering task. So, a methodology there will be helpful. Unfortunately, none of existing methodologies can offer sufficient, detailed support for such system development. To remove this limitation, this paper develops a new methodology made up of: (1) a generic framework (architectural pattern) for the main task, and (2) a library of modular and reusable design pattern (templates) of subtasks. Thus, it is much easier to build a negotiating agent by assembling these standardised components rather than reinventing the wheel each time. Moreover, since these patterns are identified from a wide variety of existing negotiating agents(especially high impact ones), they can also improve the quality of the final systems developed. In addition, our methodology reveals what types of domain knowledge need to be input into the negotiating agents. This in turn provides a basis for developing techniques to acquire the domain knowledge from human users. This is important because negotiation agents act faithfully on the behalf of their human users and thus the relevant domain knowledge must be acquired from the human users. Finally, our methodology is validated with one high impact system

    An Evolutionary Learning Approach for Adaptive Negotiation Agents

    Get PDF
    Developing effective and efficient negotiation mechanisms for real-world applications such as e-Business is challenging since negotiations in such a context are characterised by combinatorially complex negotiation spaces, tough deadlines, very limited information about the opponents, and volatile negotiator preferences. Accordingly, practical negotiation systems should be empowered by effective learning mechanisms to acquire dynamic domain knowledge from the possibly changing negotiation contexts. This paper illustrates our adaptive negotiation agents which are underpinned by robust evolutionary learning mechanisms to deal with complex and dynamic negotiation contexts. Our experimental results show that GA-based adaptive negotiation agents outperform a theoretically optimal negotiation mechanism which guarantees Pareto optimal. Our research work opens the door to the development of practical negotiation systems for real-world applications

    An Investigation of the Negotiation Domain for Electronic Commerce Information Systems

    Get PDF
    To support fully automatic business cycles, information systems for electronic commerce need to be able to conduct negotiation automatically. In recent years, a number of general frameworks for automated negotiation have been proposed. Application of such frameworks in a specific negotiation situation entails selecting the proper framework and adapting it to this situation. This selection and adaptation process is driven by the specific characteristics of the situation. This paper presents a systematic investigation of there characteristics and surveys a number of frameworks for automated negotiation

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    A multi-agent system with application in project scheduling

    Get PDF
    The new economic and social dynamics increase project complexity and makes scheduling problems more difficult, therefore scheduling requires more versatile solutions as Multi Agent Systems (MAS). In this paper the authors analyze the implementation of a Multi-Agent System (MAS) considering two scheduling problems: TCPSP (Time-Constrained Project Scheduling), and RCPSP (Resource-Constrained Project Scheduling). The authors propose an improved BDI (Beliefs, Desires, and Intentions) model and present the first the MAS implementation results in JADE platform.multi-agent architecture, scheduling, project management, BDI architecture, JADE.
    • 

    corecore