1,198 research outputs found

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration in mmWave Cellular Networks

    Get PDF
    MmWave communications are expected to play a major role in the Fifth generation of mobile networks. They offer a potential multi-gigabit throughput and an ultra-low radio latency, but at the same time suffer from high isotropic pathloss, and a coverage area much smaller than the one of LTE macrocells. In order to address these issues, highly directional beamforming and a very high-density deployment of mmWave base stations were proposed. This Thesis aims to improve the reliability and performance of the 5G network by studying its tight and seamless integration with the current LTE cellular network. In particular, the LTE base stations can provide a coverage layer for 5G mobile terminals, because they operate on microWave frequencies, which are less sensitive to blockage and have a lower pathloss. This document is a copy of the Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorzi. It will propose an LTE-5G tight integration architecture, based on mobile terminals' dual connectivity to LTE and 5G radio access networks, and will evaluate which are the new network procedures that will be needed to support it. Moreover, this new architecture will be implemented in the ns-3 simulator, and a thorough simulation campaign will be conducted in order to evaluate its performance, with respect to the baseline of handover between LTE and 5G.Comment: Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorz

    Suitability of LoRa, Sigfox and NB-IoT for Different Internet-of-Things Applications

    Get PDF
    The large-scale implementation of the internet of things (IoT) technologies is becoming a reality. IoT technologies benefit from low-power wide area network (LPWAN) systems. These technologies include Long Range (LoRa), Sigfox, and Narrowband IoT (NB-IoT). Numerous networks have already been deployed around the world, which is expected to accelerate the growth of IoT. This thesis discusses the performance of these three prominent LPWAN technologies in the market that have been specifically designed for IoT use. The main idea of LPWAN technologies is to provide wide coverage area using only small amount of base stations and to serve large amount of low-power and low-cost IoT devices. The main purpose of this thesis work is to compare LoRa, Sigfox, and NB-IoT and evaluate their suitability to various IoT applications. The appropriate technology selection is possible through in-depth analysis and technological comparison of LPWAN systems. There are many technological differences among these LPWAN technologies. A single technology may not be able to meet all requirements of all IoT applications. Therefore, some IoT applications can benefit from one technology more than others. The right selection helps in fulfilling the need of IoT application to save cost, time and improve efficiency. In addition to the literature-based suitability evaluation of the aforementioned technologies some practical measurements are performed using commercial off-the-shelf hardware. These measurements consider LoRa and Sigfox user devices in both outdoor and indoor locations. The key performance indicators obtained from the measurements are signal-to-noise ratio (SNR) and received signal strength indicator (RSSI). In addition, also penetration loss from outdoor to indoor is derived. The obtained measurement results were in line with the ones found from the literature

    Terminal LTE flexível

    Get PDF
    Mstrado em Engenharia Eletrónica e TelecomunicaçõesAs redes móveis estão em constante evolução. A geração atual (4G) de redes celulares de banda larga e representada pelo standard Long Term Evolution (LTE), definido pela 3rd Generation Partnership Project (3GPP). Existe uma elevada procura/uso da rede LTE, com um aumento exponencial do número de dispositivos móveis a requerer uma ligação à Internet de alto débito. Isto pode conduzir à sobrelotação do espetro, levando a que o sinal tenha que ser reforçado e a cobertura melhorada em locais específicos, tal como em grandes conferências, festivais e eventos desportivos. Por outro lado, seria uma vantagem importante se os utilizadores pudessem continuar a usar os seus equipamentos e terminais em situações onde o acesso a redes 4G é inexistente, tais como a bordo de um navio, eventos esporádicos em localizações remotas ou em cenários de catástrofe, em que as infraestruturas que permitem as telecomunicações foram danificadas e a cobertura temporária de rede pode ser decisiva em processos de salvamento. Assim sendo, existe uma motivação clara por trás do desenvolvimento de uma infraestrutura celular totalmente reconfigurável e que preencha as características mencionadas anteriormente. Uma possível abordagem consiste numa plataforma de rádio definido por software (SDR), de código aberto, que implementa o standard LTE e corre em processadores de uso geral (GPPs), tornando possível construir uma rede completa investindo somente em hardware - computadores e front-ends de radiofrequência (RF). Após comparação e análise de várias plataformas LTE de código aberto foi selecionado o OpenAirInterface (OAI) da EURECOM, que disponibiliza uma implementação compatível com a Release 8.6 da 3GPP (com parte das funcionalidades da Release 10). O principal objectivo desta dissertação é a implementação de um User Equipment (UE) flexível, usando plataformas SDR de código aberto que corram num computador de placa única (SBC) compacto e de baixa potência, integrado com um front-end de RF - Universal Software Radio Peripheral (USRP). A transmissão de dados em tempo real usando os modos de duplexagem Time Division Duplex (TDD) e Frequency Division Duplex (FDD) é suportada e a reconfiguração de certos parâmetros é permitida, nomeadamente a frequência portadora, a largura de banda e o número de Resource Blocks (RBs) usados. Além disso, é possível partilhar os dados móveis LTE com utilizadores que estejam próximos, semelhante ao que acontece com um hotspot de Wi-Fi. O processo de implementação é descrito, incluindo todos os passos necessários para o seu desenvolvimento, englobando o port do UE de um computador para um SBC. Finalmente, a performance da rede é analisada, discutindo os valores de débitos obtidos.Mobile networks are constantly evolving. 4G is the current generation of broadband cellular network technology and is represented by the Long Term Evolution (LTE) standard, de ned by 3rd Generation Partnership Project (3GPP). There's a high demand for LTE at the moment, with the number of mobile devices requiring an high-speed Internet connection increasing exponentially. This may overcrowd the spectrum on the existing deployments and the signal needs to be reinforced and coverage improved in speci c sites, such as large conferences, festivals and sport events. On the other hand, it would be an important advantage if users could continue to use their equipment and terminals in situations where cellular networks aren't usually available, such as on board of a cruise ship, sporadic events in remote locations, or in catastrophe scenarios in which the telecommunication infrastructure was damaged and the rapid deployment of a temporary network can save lives. In all of these situations, the availability of exible and easily deployable cellular base stations and user terminals operating on standard or custom bands would be very desirable. Thus, there is a clear motivation for the development of a fully recon gurable cellular infrastructure solution that ful lls these requirements. A possible approach is an open-source, low-cost and low maintenance Software-De ned Radio (SDR) software platform that implements the LTE standard and runs on General Purpose Processors (GPPs), making it possible to build an entire network while only spending money on the hardware itself - computers and Radio-Frequency (RF) front-ends. After comparison and analysis of several open-source LTE SDR platforms, the EURECOM's OpenAirInterface (OAI) was chosen, providing a 3GPP standard-compliant implementation of Release 8.6 (with a subset of Release 10 functionalities). The main goal of this dissertation is the implementation of a exible opensource LTE User Equipment (UE) software radio platform on a compact and low-power Single Board Computer (SBC) device, integrated with an RF hardware front-end - Universal Software Radio Peripheral (USRP). It supports real-time Time Division Duplex (TDD) and Frequency Division Duplex (FDD) LTE modes and the recon guration of several parameters, namely the carrier frequency, bandwidth and the number of LTE Resource Blocks (RB) used. It can also share its LTE mobile data with nearby users, similarly to a Wi-Fi hotspot. The implementation is described through its several developing steps, including the porting of the UE from a regular computer to a SBC. The performance of the network is then analysed based on measured results of throughput

    Authentication protocol for an IoT-enabled LTE networks

    Get PDF
    The Evolved Packet System-based Authentication and Key Agreement (EPS-AKA) protocol of the long-term evolution (LTE) network does not support Internet of Things (IoT) objects and has several security limitations, including transmission of the object’s (user/device) identity and key set identifier in plaintext over the network, synchronization, large overhead, limited identity privacy, and security attack vulnerabilities. In this article, we propose a new secure and efficient AKA protocol for the LTE network that supports secure and efficient communications among various IoT devices as well as among the users. Analysis shows that our protocol is secure, efficient, and privacy preserved, and reduces bandwidth consumption during authentication

    You have been warned: Abusing 5G's Warning and Emergency Systems

    Full text link
    The Public Warning System (PWS) is an essential part of cellular networks and a country's civil protection. Warnings can notify users of hazardous events (e.g., floods, earthquakes) and crucial national matters that require immediate attention. PWS attacks disseminating fake warnings or concealing precarious events can have a serious impact, causing fraud, panic, physical harm, or unrest to users within an affected area. In this work, we conduct the first comprehensive investigation of PWS security in 5G networks. We demonstrate five practical attacks that may impact the security of 5G-based Commercial Mobile Alert System (CMAS) as well as Earthquake and Tsunami Warning System (ETWS) alerts. Additional to identifying the vulnerabilities, we investigate two PWS spoofing and three PWS suppression attacks, with or without a man-in-the-middle (MitM) attacker. We discover that MitM-based attacks have more severe impact than their non-MitM counterparts. Our PWS barring attack is an effective technique to eliminate legitimate warning messages. We perform a rigorous analysis of the roaming aspect of the PWS, incl. its potentially secure version, and report the implications of our attacks on other emergency features (e.g., 911 SIP calls). We discuss possible countermeasures and note that eradicating the attacks necessitates a scrupulous reevaluation of the PWS design and a secure implementation

    Project BeARCAT : Baselining, Automation and Response for CAV Testbed Cyber Security : Connected Vehicle & Infrastructure Security Assessment

    Get PDF
    Connected, software-based systems are a driver in advancing the technology of transportation systems. Advanced automated and autonomous vehicles, together with electrification, will help reduce congestion, accidents and emissions. Meanwhile, vehicle manufacturers see advanced technology as enhancing their products in a competitive market. However, as many decades of using home and enterprise computer systems have shown, connectivity allows a system to become a target for criminal intentions. Cyber-based threats to any system are a problem; in transportation, there is the added safety implication of dealing with moving vehicles and the passengers within
    corecore