2,876 research outputs found

    Integrative Model-based clustering of microarray methylation and expression data

    Full text link
    In many fields, researchers are interested in large and complex biological processes. Two important examples are gene expression and DNA methylation in genetics. One key problem is to identify aberrant patterns of these processes and discover biologically distinct groups. In this article we develop a model-based method for clustering such data. The basis of our method involves the construction of a likelihood for any given partition of the subjects. We introduce cluster specific latent indicators that, along with some standard assumptions, impose a specific mixture distribution on each cluster. Estimation is carried out using the EM algorithm. The methods extend naturally to multiple data types of a similar nature, which leads to an integrated analysis over multiple data platforms, resulting in higher discriminating power.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS533 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Cross-study Validation and Combined Analysis of Gene Expression Microarray Data

    Get PDF
    Investigations of transcript levels on a genomic scale using hybridization-based arrays led to formidable advances in our understanding of the biology of many human illnesses. At the same time, these investigations have generated controversy, because of the probabilistic nature of the conclusions, and the surfacing of noticeable discrepancies between the results of studies addressing the same biological question. In this article we present simple and effective data analysis and visualization tools for gauging the degree to which the finding of one study are reproduced by others, and for integrating multiple studies in a single analysis. We describe these approaches in the context of studies of breast cancer, and illustrate that it is possible to identify a substantial, biologically relevant subset of the human genome within which hybridization results are reproducible. The subset generally varies with the platforms used, the tissues studied, and the populations being sampled. Despite important differences, it is also possible to develop simple expression measures that allow comparison across platforms, studies, labs and populations. Important biological signal is often preserved or enhanced. Cross-study validation and combination of microarray results requires careful, but not overly complex, statistical thinking, and can become a routine component of genomic analysis

    Computational Models for Transplant Biomarker Discovery.

    Get PDF
    Translational medicine offers a rich promise for improved diagnostics and drug discovery for biomedical research in the field of transplantation, where continued unmet diagnostic and therapeutic needs persist. Current advent of genomics and proteomics profiling called "omics" provides new resources to develop novel biomarkers for clinical routine. Establishing such a marker system heavily depends on appropriate applications of computational algorithms and software, which are basically based on mathematical theories and models. Understanding these theories would help to apply appropriate algorithms to ensure biomarker systems successful. Here, we review the key advances in theories and mathematical models relevant to transplant biomarker developments. Advantages and limitations inherent inside these models are discussed. The principles of key -computational approaches for selecting efficiently the best subset of biomarkers from high--dimensional omics data are highlighted. Prediction models are also introduced, and the integration of multi-microarray data is also discussed. Appreciating these key advances would help to accelerate the development of clinically reliable biomarker systems

    INTEGRATIVE ANALYSIS OF OMICS DATA IN ADULT GLIOMA AND OTHER TCGA CANCERS TO GUIDE PRECISION MEDICINE

    Get PDF
    Transcriptomic profiling and gene expression signatures have been widely applied as effective approaches for enhancing the molecular classification, diagnosis, prognosis or prediction of therapeutic response towards personalized therapy for cancer patients. Thanks to modern genome-wide profiling technology, scientists are able to build engines leveraging massive genomic variations and integrating with clinical data to identify “at risk” individuals for the sake of prevention, diagnosis and therapeutic interventions. In my graduate work for my Ph.D. thesis, I have investigated genomic sequencing data mining to comprehensively characterise molecular classifications and aberrant genomic events associated with clinical prognosis and treatment response, through applying high-dimensional omics genomic data to promote the understanding of gene signatures and somatic molecular alterations contributing to cancer progression and clinical outcomes. Following this motivation, my dissertation has been focused on the following three topics in translational genomics. 1) Characterization of transcriptomic plasticity and its association with the tumor microenvironment in glioblastoma (GBM). I have integrated transcriptomic, genomic, protein and clinical data to increase the accuracy of GBM classification, and identify the association between the GBM mesenchymal subtype and reduced tumorpurity, accompanied with increased presence of tumor-associated microglia. Then I have tackled the sole source of microglial as intrinsic tumor bulk but not their corresponding neurosphere cells through both transcriptional and protein level analysis using a panel of sphere-forming glioma cultures and their parent GBM samples.FurthermoreI have demonstrated my hypothesis through longitudinal analysis of paired primary and recurrent GBM samples that the phenotypic alterations of GBM subtypes are not due to intrinsic proneural-to-mesenchymal transition in tumor cells, rather it is intertwined with increased level of microglia upon disease recurrence. Collectively I have elucidated the critical role of tumor microenvironment (Microglia and macrophages from central nervous system) contributing to the intra-tumor heterogeneity and accurate classification of GBM patients based on transcriptomic profiling, which will not only significantly impact on clinical perspective but also pave the way for preclinical cancer research. 2) Identification of prognostic gene signatures that stratify adult diffuse glioma patientsharboring1p/19q co-deletions. I have compared multiple statistical methods and derived a gene signature significantly associated with survival by applying a machine learning algorithm. Then I have identified inflammatory response and acetylation activity that associated with malignant progression of 1p/19q co-deleted glioma. In addition, I showed this signature translates to other types of adult diffuse glioma, suggesting its universality in the pathobiology of other subset gliomas. My efforts on integrative data analysis of this highly curated data set usingoptimizedstatistical models will reflect the pending update to WHO classification system oftumorsin the central nervous system (CNS). 3) Comprehensive characterization of somatic fusion transcripts in Pan-Cancers. I have identified a panel of novel fusion transcripts across all of TCGA cancer types through transcriptomic profiling. Then I have predicted fusion proteins with kinase activity and hub function of pathway network based on the annotation of genetically mobile domains and functional domain architectures. I have evaluated a panel of in -frame gene fusions as potential driver mutations based on network fusion centrality hypothesis. I have also characterised the emerging complexity of genetic architecture in fusion transcripts through integrating genomic structure and somatic variants and delineating the distinct genomic patterns of fusion events across different cancer types. Overall my exploration of the pathogenetic impact and clinical relevance of candidate gene fusions have provided fundamental insights into the management of a subset of cancer patients by predicting the oncogenic signalling and specific drug targets encoded by these fusion genes. Taken together, the translational genomic research I have conducted during my Ph.D. study will shed new light on precision medicine and contribute to the cancer research community. The novel classification concept, gene signature and fusion transcripts I have identified will address several hotly debated issues in translational genomics, such as complex interactions between tumor bulks and their adjacent microenvironments, prognostic markers for clinical diagnostics and personalized therapy, distinct patterns of genomic structure alterations and oncogenic events in different cancer types, therefore facilitating our understanding of genomic alterations and moving us towards the development of precision medicine

    A Toolbox for Functional Analysis and the Systematic Identification of Diagnostic and Prognostic Gene Expression Signatures Combining Meta-Analysis and Machine Learning

    Get PDF
    The identification of biomarker signatures is important for cancer diagnosis and prognosis. However, the detection of clinical reliable signatures is influenced by limited data availability, which may restrict statistical power. Moreover, methods for integration of large sample cohorts and signature identification are limited. We present a step-by-step computational protocol for functional gene expression analysis and the identification of diagnostic and prognostic signatures by combining meta-analysis with machine learning and survival analysis. The novelty of the toolbox lies in its all-in-one functionality, generic design, and modularity. It is exemplified for lung cancer, including a comprehensive evaluation using different validation strategies. However, the protocol is not restricted to specific disease types and can therefore be used by a broad community. The accompanying R package vignette runs in ~1 h and describes the workflow in detail for use by researchers with limited bioinformatics training

    Predicting drug response of tumors from integrated genomic profiles by deep neural networks

    Full text link
    The study of high-throughput genomic profiles from a pharmacogenomics viewpoint has provided unprecedented insights into the oncogenic features modulating drug response. A recent screening of ~1,000 cancer cell lines to a collection of anti-cancer drugs illuminated the link between genotypes and vulnerability. However, due to essential differences between cell lines and tumors, the translation into predicting drug response in tumors remains challenging. Here we proposed a DNN model to predict drug response based on mutation and expression profiles of a cancer cell or a tumor. The model contains a mutation and an expression encoders pre-trained using a large pan-cancer dataset to abstract core representations of high-dimension data, followed by a drug response predictor network. Given a pair of mutation and expression profiles, the model predicts IC50 values of 265 drugs. We trained and tested the model on a dataset of 622 cancer cell lines and achieved an overall prediction performance of mean squared error at 1.96 (log-scale IC50 values). The performance was superior in prediction error or stability than two classical methods and four analog DNNs of our model. We then applied the model to predict drug response of 9,059 tumors of 33 cancer types. The model predicted both known, including EGFR inhibitors in non-small cell lung cancer and tamoxifen in ER+ breast cancer, and novel drug targets. The comprehensive analysis further revealed the molecular mechanisms underlying the resistance to a chemotherapeutic drug docetaxel in a pan-cancer setting and the anti-cancer potential of a novel agent, CX-5461, in treating gliomas and hematopoietic malignancies. Overall, our model and findings improve the prediction of drug response and the identification of novel therapeutic options.Comment: Accepted for presentation in the International Conference on Intelligent Biology and Medicine (ICIBM 2018) at Los Angeles, CA, USA. Currently under consideration for publication in a Supplement Issue of BMC Genomic

    Integrative multi-platform meta-analysis of gene expression profiles in pancreatic ductal adenocarcinoma patients for identifying novel diagnostic biomarkers

    Get PDF
    Applying differentially expressed genes (DEGs) to identify feasible biomarkers in diseases can be a hard task when working with heterogeneous datasets. Expression data are strongly influenced by technology, sample preparation processes, and/or labeling methods. The proliferation of different microarray platforms for measuring gene expression increases the need to develop models able to compare their results, especially when different technologies can lead to signal values that vary greatly. Integrative meta-analysis can significantly improve the reliability and robustness of DEG detection. The objective of this work was to develop an integrative approach for identifying potential cancer biomarkers by integrating gene expression data from two different platforms. Pancreatic ductal adenocarcinoma (PDAC), where there is an urgent need to find new biomarkers due its late diagnosis, is an ideal candidate for testing this technology. Expression data from two different datasets, namely Affymetrix and Illumina (18 and 36 PDAC patients, respectively), as well as from 18 healthy controls, was used for this study. A meta-analysis based on an empirical Bayesian methodology (ComBat) was then proposed to integrate these datasets. DEGs were finally identified from the integrated data by using the statistical programming language R. After our integrative meta-analysis, 5 genes were commonly identified within the individual analyses of the independent datasets. Also, 28 novel genes that were not reported by the individual analyses (`gained' genes) were also discovered. Several of these gained genes have been already related to other gastroenterological tumors. The proposed integrative metaanalysis has revealed novel DEGs that may play an important role in PDAC and could be potential biomarkers for diagnosing the disease.This work was supported by the Instituto de Salud Carlos III (grant number DTS15/00201 to OC), Ministerio de Economía Competitividad (the Spanish Ministry of Economy and Competitiveness) (grant number TIN2015-71873-R to IR), Consejería de Salud, Junta de Andalucía (PIN-0474-2016 to JP), Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (P12-TIC-2082 to IR) and the University de Granada (grant number 15/13 to OC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    OPTIMIZED CROSS-STUDY ANALYSIS OF MICROARRAY-BASED PREDICTORS

    Get PDF
    Background: Microarray-based gene expression analysis is widely used in cancer research to discover molecular signatures for cancer classification and prediction. In addition to numerous independent profiling projects, a number of investigators have analyzed multiple published data sets for purposes of cross-study validation. However, the diverse microarray platforms and technical approaches make direct comparisons across studies difficult, and without means to identify aberrant data patterns, less than optimal. To address this issue, we previously developed an integrative correlation approach to systematically address agreement of gene expression measurements across studies, providing a basis for cross-study validation analysis. Here we generalize this methodology to provide a metric for evaluating the overall efficacy of preprocessing and cross-referencing, and explore optimal combinations of filtering and cross-referencing strategies. We operate in the context of validating prognostic breast cancer gene expression signatures on data reported by three different groups, each using a different platform. Results: To evaluate overall cross-platform reproducibility in the context of a specific prediction problem, we suggest integrative association, that is the cross-study correlation of gene-specific measure of association with the phenotype predicted. Specifically, in this paper we use the correlation among the Cox proportional hazard coefficients for association of gene expression to relapse free survival (RFS). Gene filtering by integrative correlation to select reproducible genes emerged as the key factor to increase the integrative association, while alternative methods of gene cross-referencing and gene filtering proved only to modestly improve the overall reproducibility. Patient selection was another major factor affecting the validation process. In particular, in one of the studies considered, gene expression association with RFS varied across subsets of patients that differ by their ascertainment criteria. One of the subsets proved to be highly consistent with other studies, while others showed significantly lower consistency. Third, as expected, use of cluster-specific mean expression profiles in the Cox model yielded more generalizable results than expression data from individual genes. Finally, by using our approach we were able to validate the association between the breast cancer molecular classes proposed by Sorlie et al. and RFS. Conclusions: This paper provides a simple, practical and comprehensive technique for measuring consistency of molecular classification results across microarray platforms, without requiring subjective judgments about membership of samples in putative clusters. This methodology will be of value in consistently typing breast and other cancers across different studies and platforms in the future. Although the tumor subtypes considered here have been previously validated by their proponents, this is the first independent validation, and the first to include the Affymetrix platform
    corecore