22 research outputs found

    Improved large-scale prediction of growth inhibition patterns using the NCI60 cancer cell line panel

    Get PDF
    International audienceMotivation: Recent large-scale omics initiatives have catalogued the somatic alterations of cancer cell line panels along with their pharmacological response to hundreds of compounds. In this study, we have explored these data to advance computational approaches that enable more effective and targeted use of current and future anticancer therapeutics.Results: We modelled the 50% growth inhibition bioassay end-point (GI50) of 17 142 compounds screened against 59 cancer cell lines from the NCI60 panel (941 831 data-points, matrix 93.08% complete) by integrating the chemical and biological (cell line) information. We determine that the protein, gene transcript and miRNA abundance provide the highest predictive signal when modelling the GI50 endpoint, which significantly outperformed the DNA copy-number variation or exome sequencing data (Tukey’s Honestly Significant Difference, P <0.05). We demonstrate that, within the limits of the data, our approach exhibits the ability to both interpolate and extrapolate compound bioactivities to new cell lines and tissues and, although to a lesser extent, to dissimilar compounds. Moreover, our approach outperforms previous models generated on the GDSC dataset. Finally, we determine that in the cases investigated in more detail, the predicted drug-pathway associations and growth inhibition patterns are mostly consistent with the experimental data, which also suggests the possibility of identifying genomic markers of drug sensitivity for novel compounds on novel cell lines

    Bayesian Hybrid Matrix Factorisation for Data Integration

    Get PDF
    We introduce a novel Bayesian hybrid matrix factorisation model (HMF) for data integration, based on combining multiple matrix factorisation methods, that can be used for in- and out-of-matrix prediction of missing values. The model is very general and can be used to integrate many datasets across different entity types, including repeated experiments, similarity matrices, and very sparse datasets. We apply our method on two biological applications, and extensively compare it to state-of-the-art machine learning and matrix factorisation models. For in-matrix predictions on drug sensitivity datasets we obtain consistently better performances than existing methods. This is especially the case when we increase the sparsity of the datasets. Furthermore, we perform out-of-matrix predictions on methylation and gene expression datasets, and obtain the best results on two of the three datasets, especially when the predictivity of datasets is high.This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC), grant reference EP/M506485/1; and Methods for Integrated analysis of Multiple Omics datasets (MIMOmics, 305280)

    Prediction of drug sensitivity based on multi-omics data using deep learning and similarity network fusion approaches

    Get PDF
    With the rapid development of multi-omics technologies and accumulation of large-scale bio-datasets, many studies have conducted a more comprehensive understanding of human diseases and drug sensitivity from multiple biomolecules, such as DNA, RNA, proteins and metabolites. Using single omics data is difficult to systematically and comprehensively analyze the complex disease pathology and drug pharmacology. The molecularly targeted therapy-based approaches face some challenges, such as insufficient target gene labeling ability, and no clear targets for non-specific chemotherapeutic drugs. Consequently, the integrated analysis of multi-omics data has become a new direction for scientists to explore the mechanism of disease and drug. However, the available drug sensitivity prediction models based on multi-omics data still have problems such as overfitting, lack of interpretability, difficulties in integrating heterogeneous data, and the prediction accuracy needs to be improved. In this paper, we proposed a novel drug sensitivity prediction (NDSP) model based on deep learning and similarity network fusion approaches, which extracts drug targets using an improved sparse principal component analysis (SPCA) method for each omics data, and construct sample similarity networks based on the sparse feature matrices. Furthermore, the fused similarity networks are put into a deep neural network for training, which greatly reduces the data dimensionality and weakens the risk of overfitting problem. We use three omics of data, RNA sequence, copy number aberration and methylation, and select 35 drugs from Genomics of Drug Sensitivity in Cancer (GDSC) for experiments, including Food and Drug Administration (FDA)-approved targeted drugs, FDA-unapproved targeted drugs and non-specific therapies. Compared with some current deep learning methods, our proposed method can extract highly interpretable biological features to achieve highly accurate sensitivity prediction of targeted and non-specific cancer drugs, which is beneficial for the development of precision oncology beyond targeted therapy

    Linking drug target and pathway activation for effective therapy using multi-task learning

    Get PDF
    Despite the abundance of large-scale molecular and drug-response data, the insights gained about the mechanisms underlying treatment efficacy in cancer has been in general limited. Machine learning algorithms applied to those datasets most often are used to provide predictions without interpretation, or reveal single drug-gene association and fail to derive robust insights. We propose to use Macau, a bayesian multitask multi-relational algorithm to generalize from individual drugs and genes and explore the interactions between the drug targets and signaling pathways' activation. A typical insight would be: "Activation of pathway Y will confer sensitivity to any drug targeting protein X". We applied our methodology to the Genomics of Drug Sensitivity in Cancer (GDSC) screening, using gene expression of 990 cancer cell lines, activity scores of 11 signaling pathways derived from the tool PROGENy as cell line input and 228 nominal targets for 265 drugs as drug input. These interactions can guide a tissue-specific combination treatment strategy, for example suggesting to modulate a certain pathway to maximize the drug response for a given tissue. We confirmed in literature drug combination strategies derived from our result for brain, skin and stomach tissues. Such an analysis of interactions across tissues might help target discovery, drug repurposing and patient stratification strategies.Medicinal Chemistr

    Autoencoder Based Feature Selection Method for Classification of Anticancer Drug Response

    Get PDF
    Anticancer drug responses can be varied for individual patients. This difference is mainly caused by genetic reasons, like mutations and RNA expression. Thus, these genetic features are often used to construct classification models to predict the drug response. This research focuses on the feature selection issue for the classification models. Because of the vast dimensions of the feature space for predicting drug response, the autoencoder network was first built, and a subset of inputs with the important contribution was selected. Then by using the Boruta algorithm, a further small set of features was determined for the random forest, which was used to predict drug response. Two datasets, GDSC and CCLE, were used to illustrate the efficiency of the proposed method

    Drug side-effect prediction using machine learning methods

    Get PDF
    Drug toxicity (or adverse side effects) is a pressing health problem which is also an impediment to the development of therapeutically effective drugs. Despite many on-going efforts to determine the toxicity beforehand, computational prediction of drug side-effects remains a challenging task. This thesis presents an approach to predict side-effects by utilizing side-information sources for the drugs, while simultaneously comparing state-of-the-art machine learning methods to improve accuracy. Specifically, the thesis implements a data-analysis pipeline for obtaining side-information that are useful for the prediction task. This thesis then formulates the drug side-effect prediction as a machine learning problem: Given disease indications and structural features (as side-information sources) of drugs, for which some measurements of side-effect exist, predict sideeffect for a new drug. As case studies, the prediction accuracies are compared for ten different side-effects using linear as well as non-linear machine learning methods. The thesis summarizes three key findings. First, the drug side-information sources are predictive of the side-effects. Second, non-linear methods show improved prediction accuracies as compared to their linear analogs. Third, the integration of disease indications and structural features with a principled machine learning approach further improves the drug side-effect predictions. However, the current study limits the analysis assuming side-effects are independent. In future, modeling the joint relationships of several side-effects could yield more strong predictions and better help to understand the underlying biological mechanism
    corecore