8,899 research outputs found

    Updates in metabolomics tools and resources: 2014-2015

    Get PDF
    Data processing and interpretation represent the most challenging and time-consuming steps in high-throughput metabolomic experiments, regardless of the analytical platforms (MS or NMR spectroscopy based) used for data acquisition. Improved machinery in metabolomics generates increasingly complex datasets that create the need for more and better processing and analysis software and in silico approaches to understand the resulting data. However, a comprehensive source of information describing the utility of the most recently developed and released metabolomics resources—in the form of tools, software, and databases—is currently lacking. Thus, here we provide an overview of freely-available, and open-source, tools, algorithms, and frameworks to make both upcoming and established metabolomics researchers aware of the recent developments in an attempt to advance and facilitate data processing workflows in their metabolomics research. The major topics include tools and researches for data processing, data annotation, and data visualization in MS and NMR-based metabolomics. Most in this review described tools are dedicated to untargeted metabolomics workflows; however, some more specialist tools are described as well. All tools and resources described including their analytical and computational platform dependencies are summarized in an overview Table

    Network Pharmacology Approaches for Understanding Traditional Chinese Medicine

    Get PDF
    Traditional Chinese medicine (TCM) has obvious efficacy on disease treatments and is a valuable source for novel drug discovery. However, the underlying mechanism of the pharmacological effects of TCM remains unknown because TCM is a complex system with multiple herbs and ingredients coming together as a prescription. Therefore, it is urgent to apply computational tools to TCM to understand the underlying mechanism of TCM theories at the molecular level and use advanced network algorithms to explore potential effective ingredients and illustrate the principles of TCM in system biological aspects. In this thesis, we aim to understand the underlying mechanism of actions in complex TCM systems at the molecular level by bioinformatics and computational tools. In study Ⅰ, a machine learning framework was developed to predict the meridians of the herbs and ingredients. Finally, we achieved high accuracy of the meridians prediction for herbs and ingredients, suggesting an association between meridians and the molecular features of ingredients and herbs, especially the most important features for machine learning models. Secondly, we proposed a novel network approach to study the TCM formulae by quantifying the degree of interactions of pairwise herb pairs in study Ⅱ using five network distance methods, including the closest, shortest, central, kernel, as well as separation. We demonstrated that the distance of top herb pairs is shorter than that of random herb pairs, suggesting a strong interaction in the human interactome. In addition, center methods at the ingredient level outperformed the other methods. It hints to us that the central ingredients play an important role in the herbs. Thirdly, we explored the associations between herbs or ingredients and their important biological characteristics in study III, such as properties, meridians, structures, or targets via clusters from community analysis of the multipartite network. We found that herbal medicines among the same clusters tend to be more similar in the properties, meridians. Similarly, ingredients from the same cluster are more similar in structure and protein target. In summary, this thesis intends to build a bridge between the TCM system and modern medicinal systems using computational tools, including the machine learning model for meridian theory, network modelling for TCM formulae, as well as multipartite network analysis for herbal medicines and their ingredients. We demonstrated that applying novel computational approaches on the integrated high-throughput omics would provide insights for TCM and accelerate the novel drug discovery as well as repurposing from TCM.Perinteinen kiinalainen lääketiede (TCM) on ilmeinen tehokkuus taudin hoidoissa ja on arvokas lähde uuden lääkkeen löytämiseen. TCM: n farmakologisten vaikutusten taustalla oleva mekanismi pysyy kuitenkin tuntemattomassa, koska TCM on monimutkainen järjestelmä, jossa on useita yrttejä ja ainesosia, jotka tulevat yhteen reseptilääkkeeksi. Siksi on kiireellistä soveltaa Laskennallisia työkaluja TCM: lle ymmärtämään TCM-teorioiden taustalla oleva mekanismi molekyylitasolla ja käyttävät kehittyneitä verkkoalgoritmeja tutkimaan mahdollisia tehokkaita ainesosia ja havainnollistavat TCM: n periaatteita järjestelmän biologisissa näkökohdissa. Tässä opinnäytetyössä pyrimme ymmärtämään monimutkaisten TCM-järjestelmien toimintamekanismia molekyylitasolla bioinformaattilla ja laskennallisilla työkaluilla. Tutkimuksessa kehitettiin koneen oppimiskehystä yrttien ja ainesosien meridialaisista. Lopuksi saavutimme korkean tarkkuuden meridiaaneista yrtteistä ja ainesosista, mikä viittaa meridiaaneihin ja ainesosien ja yrtteihin liittyvien molekyylipiirin välillä, erityisesti koneen oppimismalleihin tärkeimmät ominaisuudet. Toiseksi ehdoimme uuden verkon lähestymistavan TCM-kaavojen tutkimiseksi kvantitoimisella vuorovaikutteisten yrttiparien vuorovaikutuksen tutkimuksessa ⅱ käyttämällä viisi verkkoetäisyyttä, mukaan lukien lähin, lyhyt, keskus, ydin sekä erottaminen. Osoitimme, että ylä-yrttiparien etäisyys on lyhyempi kuin satunnaisten yrttiparien, mikä viittaa voimakkaaseen vuorovaikutukseen ihmisellä vuorovaikutteisesti. Lisäksi Center-menetelmät ainesosan tasolla ylittivät muut menetelmät. Se vihjeitä meille, että keskeiset ainesosat ovat tärkeässä asemassa yrtteissä. Kolmanneksi tutkimme yrttien tai ainesosien välisiä yhdistyksiä ja niiden tärkeitä biologisia ominaisuuksia tutkimuksessa III, kuten ominaisuudet, meridiaanit, rakenteet tai tavoitteet klustereiden kautta moniparite-verkoston yhteisön analyysistä. Löysimme, että kasviperäiset lääkkeet samoilla klusterien keskuudessa ovat yleensä samankaltaisia ominaisuuksissa, meridiaaneissa. Samoin saman klusterin ainesosat ovat samankaltaisempia rakenteissa ja proteiinin tavoitteessa. Yhteenvetona tämä opinnäytetyö aikoo rakentaa silta TCM-järjestelmän ja nykyaikaisten lääkevalmisteiden välillä laskentatyökaluilla, mukaan lukien Meridian-teorian koneen oppimismalli, TCM-kaavojen verkkomallinnus sekä kasviperäiset lääkkeet ja niiden ainesosat Osoitimme, että uusien laskennallisten lähestymistapojen soveltaminen integroidulle korkean suorituskyvyttömiehille tarjosivat TCM: n näkemyksiä ja nopeuttaisivat romaanin huumeiden löytöä sekä toistuvat TCM: stä

    The potential of a data centred approach & knowledge graph data representation in chemical safety and drug design

    Get PDF
    Big Data pervades nearly all areas of life sciences, yet the analysis of large integrated data sets remains a major challenge. Moreover, the field of life sciences is highly fragmented and, consequently, so is its data, knowledge, and standards. This, in turn, makes integrated data analysis and knowledge gathering across sub-fields a demanding task. At the same time, the integration of various research angles and data types is crucial for modelling the complexity of organisms and biological processes in a holistic manner. This is especially valid in the context of drug development and chemical safety assessment where computational methods can provide solutions for the urgent need of fast, effective, and sustainable approaches. At the same time, such computational methods require the development of methodologies suitable for an inte-grated and data centred Big Data view. Here we discuss Knowledge Graphs (KG) as a solution to a data centred analysis approach for drug and chemical development and safety assessment. KGs are knowledge bases, data analysis engines, and knowledge discovery systems all in one, allowing them to be used from simple data retrieval, over meta-analysis to complex predictive and knowledge discovery systems. Therefore, KGs have immense potential to advance the data centred approach, the re-usability, and infor-mativity of data. Furthermore, they can improve the power of analysis, and the complexity of modelled processes, all while providing knowledge in a natively human understandable network data model. (c) 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-commons.org/licenses/by-nc-nd/4.0/).Peer reviewe

    Network-based methods for biological data integration in precision medicine

    Full text link
    [eng] The vast and continuously increasing volume of available biomedical data produced during the last decades opens new opportunities for large-scale modeling of disease biology, facilitating a more comprehensive and integrative understanding of its processes. Nevertheless, this type of modelling requires highly efficient computational systems capable of dealing with such levels of data volumes. Computational approximations commonly used in machine learning and data analysis, namely dimensionality reduction and network-based approaches, have been developed with the goal of effectively integrating biomedical data. Among these methods, network-based machine learning stands out due to its major advantage in terms of biomedical interpretability. These methodologies provide a highly intuitive framework for the integration and modelling of biological processes. This PhD thesis aims to explore the potential of integration of complementary available biomedical knowledge with patient-specific data to provide novel computational approaches to solve biomedical scenarios characterized by data scarcity. The primary focus is on studying how high-order graph analysis (i.e., community detection in multiplex and multilayer networks) may help elucidate the interplay of different types of data in contexts where statistical power is heavily impacted by small sample sizes, such as rare diseases and precision oncology. The central focus of this thesis is to illustrate how network biology, among the several data integration approaches with the potential to achieve this task, can play a pivotal role in addressing this challenge provided its advantages in molecular interpretability. Through its insights and methodologies, it introduces how network biology, and in particular, models based on multilayer networks, facilitates bringing the vision of precision medicine to these complex scenarios, providing a natural approach for the discovery of new biomedical relationships that overcomes the difficulties for the study of cohorts presenting limited sample sizes (data-scarce scenarios). Delving into the potential of current artificial intelligence (AI) and network biology applications to address data granularity issues in the precision medicine field, this PhD thesis presents pivotal research works, based on multilayer networks, for the analysis of two rare disease scenarios with specific data granularities, effectively overcoming the classical constraints hindering rare disease and precision oncology research. The first research article presents a personalized medicine study of the molecular determinants of severity in congenital myasthenic syndromes (CMS), a group of rare disorders of the neuromuscular junction (NMJ). The analysis of severity in rare diseases, despite its importance, is typically neglected due to data availability. In this study, modelling of biomedical knowledge via multilayer networks allowed understanding the functional implications of individual mutations in the cohort under study, as well as their relationships with the causal mutations of the disease and the different levels of severity observed. Moreover, the study presents experimental evidence of the role of a previously unsuspected gene in NMJ activity, validating the hypothetical role predicted using the newly introduced methodologies. The second research article focuses on the applicability of multilayer networks for gene priorization. Enhancing concepts for the analysis of different data granularities firstly introduced in the previous article, the presented research provides a methodology based on the persistency of network community structures in a range of modularity resolution, effectively providing a new framework for gene priorization for patient stratification. In summary, this PhD thesis presents major advances on the use of multilayer network-based approaches for the application of precision medicine to data-scarce scenarios, exploring the potential of integrating extensive available biomedical knowledge with patient-specific data

    Good Signal Detection Practices: Evidence from IMI PROTECT

    Get PDF

    UPLC-ESI-MRM/MS for Absolute Quantification and MS/MS Structural Elucidation of Six Specialized Pyranonaphthoquinone Metabolites From Ventilago harmandiana

    Get PDF
    Pyranonaphthoquinones (PNQs) are important structural scaffolds found in numerous natural products. Research interest in these specialized metabolites lies in their natural occurrence and therapeutic activities. Nonetheless, research progress has thus far been hindered by the lack of analytical standards and analytical methods for both qualitative and quantitative analysis. We report here that various parts of Ventilago harmandiana are rich sources of PNQs. We developed an ultraperformance liquid chromatography-electrospray ionization multiple reaction monitoring/mass spectrometry method to quantitatively determine six PNQs from leaves, root, bark, wood, and heartwood. The addition of standards in combination with a stable isotope of salicylic acid-D-6 was used to overcome the matrix effect with average recovery of 82% +/- 1% (n = 15). The highest concentration of the total PNQs was found in the root (11,902 mu g/g dry weight), whereas the lowest concentration was found in the leaves (28 mu g/g dry weight). Except for the root, PNQ-332 was found to be the major compound in all parts of V. harmandiana, accounting for similar to 48% of the total PNQs quantified in this study. However, PNQ-318A was the most abundant PNQ in the root sample, accounting for 27% of the total PNQs. Finally, we provide novel MS/MS spectra of the PNQs at different collision induction energies: 10, 20, and 40 eV (POS and NEG). For structural elucidation purposes, we propose complete MS/MS fragmentation pathways of PNQs using MS/MS spectra at collision energies of 20 and 40 eV. The MS/MS spectra along with our discussion on structural elucidation of these PNQs should be very useful to the natural products community to further exploring PNQs in V. harmandiana and various other sources

    A Computational Drug-Target Network for Yuanhu Zhitong Prescription

    Get PDF
    Yuanhu Zhitong prescription (YZP) is a typical and relatively simple traditional Chinese medicine (TCM), widely used in the clinical treatment of headache, gastralgia, and dysmenorrhea. However, the underlying molecular mechanism of action of YZP is not clear. In this study, based on the previous chemical and metabolite analysis, a complex approach including the prediction of the structure of metabolite, high-throughput in silico screening, and network reconstruction and analysis was developed to obtain a computational drug-target network for YZP. This was followed by a functional and pathway analysis by ClueGO to determine some of the pharmacologic activities. Further, two new pharmacologic actions, antidepressant and antianxiety, of YZP were validated by animal experiments using zebrafish and mice models. The forced swimming test and the tail suspension test demonstrated that YZP at the doses of 4 mg/kg and 8 mg/kg had better antidepressive activity when compared with the control group. The anxiolytic activity experiment showed that YZP at the doses of 100 mg/L, 150 mg/L, and 200 mg/L had significant decrease in diving compared to controls. These results not only shed light on the better understanding of the molecular mechanisms of YZP for curing diseases, but also provide some evidence for exploring the classic TCM formulas for new clinical application
    corecore