217 research outputs found

    Biologically Interpretable, Integrative Deep Learning for Cancer Survival Analysis

    Get PDF
    Identifying complex biological processes associated to patients\u27 survival time at the cellular and molecular level is critical not only for developing new treatments for patients but also for accurate survival prediction. However, highly nonlinear and high-dimension, low-sample size (HDLSS) data cause computational challenges in survival analysis. We developed a novel family of pathway-based, sparse deep neural networks (PASNet) for cancer survival analysis. PASNet family is a biologically interpretable neural network model where nodes in the network correspond to specific genes and pathways, while capturing nonlinear and hierarchical effects of biological pathways associated with certain clinical outcomes. Furthermore, integration of heterogeneous types of biological data from biospecimen holds promise of improving survival prediction and personalized therapies in cancer. Specifically, the integration of genomic data and histopathological images enhances survival predictions and personalized treatments in cancer study, while providing an in-depth understanding of genetic mechanisms and phenotypic patterns of cancer. Two proposed models will be introduced for integrating multi-omics data and pathological images, respectively. Each model in PASNet family was evaluated by comparing the performance of current cutting-edge models with The Cancer Genome Atlas (TCGA) cancer data. In the extensive experiments, PASNet family outperformed the benchmarking methods, and the outstanding performance was statistically assessed. More importantly, PASNet family showed the capability to interpret a multi-layered biological system. A number of biological literature in GBM supported the biological interpretation of the proposed models. The open-source software of PASNet family in PyTorch is publicly available at https://github.com/DataX-JieHao

    The University of Pennsylvania Glioblastoma (UPenn-GBM) cohort: Advanced MRI, clinical, genomics, & radiomics

    Get PDF
    Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments

    Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review

    Get PDF
    Background: The widespread use of immune checkpoint inhibitors (ICIs) has revolutionised treatment of multiple cancer types. However, selecting patients who may benefit from ICI remains challenging. Artificial intelligence (AI) approaches allow exploitation of high-dimension oncological data in research and development of precision immuno-oncology. Materials and methods: We conducted a systematic literature review of peer-reviewed original articles studying the ICI efficacy prediction in cancer patients across five data modalities: genomics (including genomics, transcriptomics, and epigenomics), radiomics, digital pathology (pathomics), and real-world and multimodality data. Results: A total of 90 studies were included in this systematic review, with 80% published in 2021-2022. Among them, 37 studies included genomic, 20 radiomic, 8 pathomic, 20 real-world, and 5 multimodal data. Standard machine learning (ML) methods were used in 72% of studies, deep learning (DL) methods in 22%, and both in 6%. The most frequently studied cancer type was non-small-cell lung cancer (36%), followed by melanoma (16%), while 25% included pan-cancer studies. No prospective study design incorporated AI-based methodologies from the outset; rather, all implemented AI as a post hoc analysis. Novel biomarkers for ICI in radiomics and pathomics were identified using AI approaches, and molecular biomarkers have expanded past genomics into transcriptomics and epigenomics. Finally, complex algorithms and new types of AI-based markers, such as meta-biomarkers, are emerging by integrating multimodal/multi-omics data. Conclusion: AI-based methods have expanded the horizon for biomarker discovery, demonstrating the power of integrating multimodal data from existing datasets to discover new meta-biomarkers. While most of the included studies showed promise for AI-based prediction of benefit from immunotherapy, none provided high-level evidence for immediate practice change. A priori planned prospective trial designs are needed to cover all lifecycle steps of these software biomarkers, from development and validation to integration into clinical practice

    AI in Medical Imaging Informatics: Current Challenges and Future Directions

    Get PDF
    This paper reviews state-of-the-art research solutions across the spectrum of medical imaging informatics, discusses clinical translation, and provides future directions for advancing clinical practice. More specifically, it summarizes advances in medical imaging acquisition technologies for different modalities, highlighting the necessity for efficient medical data management strategies in the context of AI in big healthcare data analytics. It then provides a synopsis of contemporary and emerging algorithmic methods for disease classification and organ/ tissue segmentation, focusing on AI and deep learning architectures that have already become the de facto approach. The clinical benefits of in-silico modelling advances linked with evolving 3D reconstruction and visualization applications are further documented. Concluding, integrative analytics approaches driven by associate research branches highlighted in this study promise to revolutionize imaging informatics as known today across the healthcare continuum for both radiology and digital pathology applications. The latter, is projected to enable informed, more accurate diagnosis, timely prognosis, and effective treatment planning, underpinning precision medicine

    Tumor heterogeneity in glioblastoma:a real-life brain teaser

    Get PDF

    Current perspectives concerning the multimodal therapy in Glioblastoma

    Get PDF
    GBM (Glioblastoma) is the most common, malignant type of primary brain tumor. It has a dismal prognosis, with an average life expectancy of less than 15 months. A better understanding of the tumor biology of GBM has been achieved in the past decade and set up new directions in the multimodal therapy by targeting the molecular paths involved in tumor initiation and progression. Invasion is a hallmark of GBM, and targeting the complex invasive mechanism of the tumor is mandatory in order to achieve a satisfactory result in GBM therapy. The goal of this review is to describe the tumor biology and key features of GBM and to provide an up-to-date overview of the current identified molecular alterations involved both in tumorigenesis and tumor progression

    Model-Based Approach for Diffuse Glioma Classification, Grading, and Patient Survival Prediction

    Get PDF
    The work in this dissertation proposes model-based approaches for molecular mutations classification of gliomas, grading based on radiomics features and genomics, and prediction of diffuse gliomas clinical outcome in overall patient survival. Diffuse gliomas are types of Central Nervous System (CNS) brain tumors that account for 25.5% of primary brain and CNS tumors and originate from the supportive glial cells. In the 2016 World Health Organization’s (WHO) criteria for CNS brain tumor, a major reclassification of the diffuse gliomas is presented based on gliomas molecular mutations and the growth behavior. Currently, the status of molecular mutations is determined by obtaining viable regions of tumor tissue samples. However, an increasing need to non-invasively analyze the clinical outcome of tumors requires careful modeling and co-analysis of radiomics (i.e., imaging features) and genomics (molecular and proteomics features). The variances in diffuse Lower-grade gliomas (LGG), which are demonstrated by their heterogeneity, can be exemplified by radiographic imaging features (i.e., radiomics). Therefore, radiomics may be suggested as a crucial non-invasive marker in the tumor diagnosis and prognosis. Consequently, we examine radiomics extracted from the multi-resolution fractal representations of the tumor in classifying the molecular mutations of diffuse LGG non-invasively. The proposed radiomics in the decision-tree-based ensemble machine learning molecular prediction model confirm the efficacy of these fractal features in glioma prediction. Furthermore, this dissertation proposes a novel non-invasive statistical model to classify and predict LGG molecular mutations based on radiomics and count-based genomics data. The performance results of the proposed statistical model indicate that fusing radiomics to count-based genomics improves the performance of mutations prediction. Furthermore, the radiomics-based glioblastoma survival prediction framework is proposed in this work. The survival prediction framework includes two survival prediction pipelines that combine different feature selection and regression approaches. The framework is evaluated using two recent widely used benchmark datasets from Brain Tumor Segmentation (BraTS) challenges in 2017 and 2018. The first survival prediction pipeline offered the best overall performance in the 2017 Challenge, and the second survival prediction pipeline offered the best performance using the validation dataset. In summary, in this work, we develop non-invasive computational and statistical models based on radiomics and genomics to investigate overall survival, tumor progression, and the molecular classification in diffuse gliomas. The methods discussed in our study are important steps towards a non-invasive approach to diffuse brain tumor classification, grading, and patient survival prediction that may be recommended prior to invasive tissue sampling in a clinical setting
    corecore