171 research outputs found

    Nanotube film-enhanced 3-D photoanode for application in microsystems technology

    Get PDF
    Surface area plays an important factor in the energy conversion performance of solar cells. It has also emerged as a critical factor in the evolution of high-performance micro-electro-mechanical systems (MEMS) and multifunctional microstructures most of which will benefit from integrated on-chip solar power. Presented here is the hierarchical fabrication and characterization of TiO2 nanotubes on non-planar 3-dimensional microstructures for enhanced performance of the photoanode in dye-sensitized solar cells (DSSCs). The objective is to increase photoanode performance within a 1 cm2 lateral footprint area by increasing the vertical surface area through the formation of TiO2 nanotubes on 3-D microstructures. In the interest of the seamless integration of DSSCs into MEMS applications, bulk micromachining using wet-etching was employed to fabricate 3-D microstructures in silicon. Anodization was used to form titania nanotubes within sputtered titanium thin films. Film quality, adhesion, and the formation of the nanotubes are discussed. Nanotubes with approximate outer diameter dimensions of 180 nm, inner diameter of 75 nm, and heights of 340 nm on 15 um-sq x 15 um-deep micro-wells were fabricated resulting in more than 5 times the increase in surface area over planar surfaces. Grazing incidence diffraction measurements were used to negate the substrate contribution while providing a detailed in-depth profile analysis to validate the preferred polycrystalline rutile and anatase orientation on the 3D surface-texture photoanode. The increase in surface area resulted in an equal increase in dye adsorption capacity and a 78% reduction in spectral reflectance. The optical enhancement of this hierarchically-structured nanotube film-enhanced (NFE) 3D photoanode correlated well to a high current density increase 10 times that of its flat counterpart. Fabrication of a DSSC utilizing the NFE 3D photoanode was also performed and tested for its photocurrent performance under solar simulation. Results suggest that although the surface-textured anode increases the performance of the photoanode, efficiency of the overall cell significantly depends on the architecture. A conceptual implementation of the NFE 3-D photoanode into microsystems is also discussed along with conclusions and suggestions for future work

    DESIGN AND MICROFABRICATION OF EDGE-LIT OPTICAL LIGHT CURTAINS

    Get PDF
    Plastic optical light guides can be used for a variety of interior and exterior vehicle light curtains such as cabin illuminators and automotive tail lights. The edge-lit wave guide is an optically transparent substrate coupled with one or more energy efficient light emitting diodes (LEDs). The light rays from the source travel through the substrate based on the principle of total internal reflection. If a surface of the optical wave guide is patterned with optical microstructures then the light rays will scatter and refract throughout the medium, primarily exiting opposite to the patterned surface. Uniform illumination over this active surface region is a function of the individual optical microstructure\u27s shape and the spatial distribution of the microstructures. The goal of this research is to investigate the light dispersion characteristics in both smooth and micro-patterned optically transparent substrates, and utilize optical simulation software to develop viable design approaches for fabricating small and medium sized light curtains. The study first identifies an appropriate optical microstructure (i.e. cylindrical indentations) that can be reliably imprinted on the surface of an optically transparent polymethyl-methacrylate (PMMA) substrate using a multi-axis micromilling machine. The optical simulation software Light Tools is then used to determine the most appropriate microstructure radius and spatial positioning of elements for uniform light distribution. The key design and fabrication parameters for near optimal performance are summarized and used to establish the process plan for the high-speed precision micromilling operations. Experiments are performed on several 100 mm x 100 mm x 6 mm polymer light guide panels (LGPs) including a customized design with a hexagonal arrangement of microstructures. Both interior and boundary regions of the sample LGPs are investigated for intensity distribution, optical transmission efficiency, and light loss. Although the experiments involve relatively small flat PMMA LGPs, the optical design and microfabrication methods can be readily extended to larger surface areas or curved optically transparent polymer substrates for contoured light curtains

    Integrated polymer photonics : fabrication, design, characterization and applications

    Get PDF
    [no abstract

    GROWTH OF SILVER NANOPARTICLES ON TRANSPARENT SUBSTRATES FROM LIQUID PRECURSORS: IMPROVEMENTS AND APPLICATIONS

    Get PDF
    Interest in controlling the synthesis of silver nanoparticles in colloidal solutions has increased during the last two decades. There is also growing interest in forming layers of silver nanoparticles on substrates, particularly for surface-enhanced Raman spectroscopy applications. However, methods to grow silver nanoparticles directly on substrates have not been studied extensively, and there are few techniques for controlling the size, shape, density, and location of the particles. This work presents a simple and reliable method to photodeposit silver nanoparticles onto transparent substrates. The size, shape and deposition density of the nanoparticles are influenced by the precursor solution, light intensity, and surface modification of the substrate. This allows control of the optical and electrical properties of the nanoparticle films. Furthermore, the particles can be patterned using direct laser exposure, scanning probe methods, and electron-beam lithography. Applications and advantages of this deposition method are proposed and explored

    Nanoimprint Lithography Technology and Applications

    Get PDF
    Nanoimprint Lithography (NIL) has been an interesting and growing field in recent years since its beginnings in the mid-1990s. During that time, nanoimprinting has undergone significant changes and developments and nowadays is a technology used in R&D labs and industrial production processes around the world. One of the exciting things about nanoimprinting process is its remarkable versatility and the broad range of applications. This reprint includes ten articles, which represent a small glimpse of the challenges and possibilities of this technology. Six contributions deal with nanoimprint processes aiming at specific applications, while the other four papers focus on more general aspects of nanoimprint processes or present novel materials. Several different types of nanoimprint processes are used: plate-to-plate, roll-to-plate, and roll-to-roll. Plate-to-plate NIL here also includes the use of soft and flexible stamps. The application fields in this reprint are broad and can be identified as plasmonics, superhydrophibicity, biomimetics, optics/datacom, and life sciences, showing the broad applicability of nanoimprinting. The sections on the nanoimprint process discuss filling and wetting aspects during nanoimprinting as well as materials for stamps and imprinting

    Alumina waveguide characterization and SPARROW biosensor modeling

    Get PDF
    Sensors based on evanescent wave techniques have the potential to detect minute change in refractive index arising from surface modifications. The biosensor device architecture evaluated in this work is the SPARROW (Stacked Planar Affinity Regulated Resonant Optical Waveguide) structure. This architecture can operate as a biosensor through the change in the coupled optical power resulted from antigen bonding to the bio-layer. Its stacked film arrangement with no lateral patterning offers a potentially less complex structure for fabrication. This thesis describes the process developed to optically characterize the alumina waveguides of the SPARROW device and investigates waveguide film quality as a function of fabrication parameters. Parameters include e-beam deposition drive current and oxygen flow rate. Losses of 1-3 dB/cm have been measured for usable guiding films using the scattered power measurement technique. Microfluidic channel hybrid integration with the SPARROW device and flow cell experiments are discussed. Coupled power and coupling length variation with top waveguide thickness and index is also evaluated and discussed

    Microfluidics and Nanofluidics Handbook

    Get PDF
    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Numerical Simulation Lattice Boltzmann Method and Its Applications in Microfluidics Microparticle and Nanoparticle Manipulation Methane Solubility Enhancement in Water Confined to Nanoscale Pores Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals

    Integral Optics: Lecture Notes

    Get PDF
    An introduction is given to the principles of integrated optics and optical guided-wave devices. The characteristics of dielectric waveguides are summarized and methods for their fabrication are described. An illustration is given of recent work on devices including directional couplers, filters, modulators, light deflectors, and lasers. The textbook reflects the latest achievements in the field of integrated optics, which have had a significant impact on the development of communication technology and methods for transmitting and processing information

    Anisotropic Particles: Preparation and Study

    Get PDF
    Anisotropic particles have received significant attention in self-assembly for the large scale fabrication of hierarchical structures. Janus particles, a specific class of anisotropic particles, have two hemispheres with different materials. Due to the anisotropic nature of the particle shape and interactions, Janus particles have demonstrated interesting properties in interfacial assembly, switchable devices, cargo transport, and optical sensing. The objective of this research is to fabricate novel anisotropic Janus particles and explore their potential unique properties.;One of the driving forces arises from the previous work of bimetallic nanorods and their autonomous motion. The bimetallic nanorod systems undergo chemically powered non- Brownian motion due to the asymmetric distribution of catalytic source for a chemical fuel solution. However, the approach used to prepare the bimetallic nanorods is rather complex. The original design of bimetallic Janus particles is based on a general physical vapor deposition technique -- electron beam evaporation. The resulting bimetallic Janus particles are colloidal silica spheres coated with two differing metals on each hemisphere. This approach allows fabricating bimetallic Janus particles with various combinations of metals that are available for electron beam evaporation.;Chemical transformation of bimetallic Janus particles into other species provides an opportunity to expand the scope of anisotropic particles. The metals on the Janus particles are possible to convert to their corresponding metal oxides and metal sulfides through solid-gas heterogeneous reactions, and therefore, the chemical transformation of the parent bimetallic Janus particles produces a wide array of previously unavailable Janus particle types, including metal/metal oxide, metal/metal sulfide, metal oxide/metal oxide, metal sulfide/metal sulfide, and metal oxide/metal sulfide, which allows tuning their optical, electronic, magnetic and catalytic properties. This vast library of anisotropic particulate building blocks provides a powerful arsenal for engineering the assembly of specific targeted structures and systems.;Autonomous motion is distinctive from Brownian motion. Platinum half-coated Janus particles undergo self-propelled motion, which is induced by the catalytic decomposition of hydrogen peroxide. The average speed of the self-propelled Pt-SiO2 Janus particles increases with increasing the concentration of hydrogen peroxide. Motion direction analyses show that the probability for the Janus particles continuing to travel in nearly same direction goes higher in higher concentrations of hydrogen peroxide. Microscopic observation of the particle motion demonstrates that these Janus particles move, on average, with the platinum-coated region oriented opposite to the direction of motion. The trajectories of the autonomous motion exhibit a directed motion at short time scale but with an overall random behavior at long time scales. Huge benefit can be garnered by taking advantage of the self-propulsion component in the system. The control of the motion of the magnetic Janus particles in solutions of hydrogen peroxide is demonstrated using the external magnetic field. The magnetic Janus particles orient themselves with the equatorial plane parallel to the applied field and the motion direction is perpendicular to the field. The directed motion has a more distinct preferred direction compared to the case in the absence of magnetic field, and the applied field is verified to control the orientation, not influence the speed of the particle motion.;Anisotropic particles are unique building blocks to assemble complex structures. The surface functionalized Janus particles with alkanethiols are adsorbed at the interfaces of liquid-air and liquid-liquid, forming monolayers with metal hemispheres pointing to the same direction. By changing the liquid oil phase, the orientation of the Janus particles can be manipulated, which provides an opportunity to selectively modify the surface in either phase. The preferential orientation in the same direction at interfaces allows for direct transfer of the Janus particles while the desired faces remain in either a face-down or face-up configuration. An external intervention, magnetic field, is also sought to direct the assembly of the magnetic Janus particles. In the presence of uniform magnetic field, the magnetic Janus particles form staggered chain structures with the chain direction parallel to the direction of the applied field. These chain structures are destroyed due to the capillary force during solvent evaporation. However, these soft structures are successfully locked in place after the solution dries by the addition of ammonium carbonate to the solution, which suggests a promising way to achieve 2D or 3D super structures for the fabrication of photonic crystals and photonic devices

    Integrated-Optics Components Utilizing Long-Range Surface Plasmon Polaritons

    Get PDF
    corecore