6,063 research outputs found

    Prop-Based Haptic Interaction with Co-location and Immersion: an Automotive Application

    Get PDF
    Most research on 3D user interfaces aims at providing only a single sensory modality. One challenge is to integrate several sensory modalities into a seamless system while preserving each modality's immersion and performance factors. This paper concerns manipulation tasks and proposes a visuo-haptic system integrating immersive visualization, tactile force and tactile feedback with co-location. An industrial application is presented

    A survey of haptics in serious gaming

    Get PDF
    Serious gaming often requires high level of realism for training and learning purposes. Haptic technology has been proved to be useful in many applications with an additional perception modality complementary to the audio and the vision. It provides novel user experience to enhance the immersion of virtual reality with a physical control-layer. This survey focuses on the haptic technology and its applications in serious gaming. Several categories of related applications are listed and discussed in details, primarily on haptics acts as cognitive aux and main component in serious games design. We categorize haptic devices into tactile, force feedback and hybrid ones to suit different haptic interfaces, followed by description of common haptic gadgets in gaming. Haptic modeling methods, in particular, available SDKs or libraries either for commercial or academic usage, are summarized. We also analyze the existing research difficulties and technology bottleneck with haptics and foresee the future research directions

    Docking Haptics: Extending the Reach of Haptics by Dynamic Combinations of Grounded and Worn Devices

    Full text link
    Grounded haptic devices can provide a variety of forces but have limited working volumes. Wearable haptic devices operate over a large volume but are relatively restricted in the types of stimuli they can generate. We propose the concept of docking haptics, in which different types of haptic devices are dynamically docked at run time. This creates a hybrid system, where the potential feedback depends on the user's location. We show a prototype docking haptic workspace, combining a grounded six degree-of-freedom force feedback arm with a hand exoskeleton. We are able to create the sensation of weight on the hand when it is within reach of the grounded device, but away from the grounded device, hand-referenced force feedback is still available. A user study demonstrates that users can successfully discriminate weight when using docking haptics, but not with the exoskeleton alone. Such hybrid systems would be able to change configuration further, for example docking two grounded devices to a hand in order to deliver twice the force, or extend the working volume. We suggest that the docking haptics concept can thus extend the practical utility of haptics in user interfaces

    Haptic induced motor learning and the extension of its benefits to stroke patients

    Get PDF
    In this research, the Haptic Master robotic arm and virtual environments are used to induce motor learning in subjects with no known musculoskeletal or neurological disorders. It is found in this research that both perception and performance of the subject are increased through the haptic and visual feedback delivered through the Haptic Master. These system benefits may be extended to enhance therapies for patients with loss of motor skills due to neurological disease or brain injury. Force and visual feedback were manipulated within virtual environment scenarios to facilitate learning. In one force feedback condition, the subject is required to maneuver a sphere through a haptic maze or linear channel. In the second feedback condition, the subject\u27s movement was stopped when the sphere came in contact with the haptic walls. To resume movement, the force vector had to be redirected towards the optimal trajectory. To analyze the efficiency of the various scenarios, the area between the optimal and actual trajectories was used as a measure of learning. The results from this research demonstrated that within more complex environments one type of force feedback was more successful in facilitating motor learning. In a simpler environment, two out of three subjects experienced a higher degree of motor learning with the same type of force feedback. Learning is not enhanced with the presence of visual feedback. Also, in nearly all studied cases, the primary limitation to learning is shoulder and attention fatigue brought on by the experimentation

    Research progress of flexible sensor and its interaction technology in force feedback electronic clothing

    Get PDF
    The sense in simulated reality is the key of human-computer interaction technology. Force feedback interaction technology is an important factor to realize simulated force sense in virtual reality. It can truly reproduce the physical information such as the mass, inertia and hardness of things in the virtual world. This paper summarizes the flexible sensors commonly used in force feedback technology and the development and research status of virtual reality wearable electronic clothing equipment based on force feedback technology, summarizes the principles of several force feedback structures, analyzes and compares their characteristics and main application fields. This paper briefly describes the prospect of force feedback technology, summarizes the trend of high-precision, multi-modal and multi-point interaction of force feedback equipment in the future, and puts forward some suggestions on miniaturization, softness and authenticity of force feedback technology in combination with the application characteristics of wearable electronic clothing

    Virtual reality for assembly methods prototyping: a review

    Get PDF
    Assembly planning and evaluation is an important component of the product design process in which details about how parts of a new product will be put together are formalized. A well designed assembly process should take into account various factors such as optimum assembly time and sequence, tooling and fixture requirements, ergonomics, operator safety, and accessibility, among others. Existing computer-based tools to support virtual assembly either concentrate solely on representation of the geometry of parts and fixtures and evaluation of clearances and tolerances or use simulated human mannequins to approximate human interaction in the assembly process. Virtual reality technology has the potential to support integration of natural human motions into the computer aided assembly planning environment (Ritchie et al. in Proc I MECH E Part B J Eng 213(5):461–474, 1999). This would allow evaluations of an assembler’s ability to manipulate and assemble parts and result in reduced time and cost for product design. This paper provides a review of the research in virtual assembly and categorizes the different approaches. Finally, critical requirements and directions for future research are presented

    Robotic simulators for tissue examination training with multimodal sensory feedback

    Get PDF
    Tissue examination by hand remains an essential technique in clinical practice. The effective application depends on skills in sensorimotor coordination, mainly involving haptic, visual, and auditory feedback. The skills clinicians have to learn can be as subtle as regulating finger pressure with breathing, choosing palpation action, monitoring involuntary facial and vocal expressions in response to palpation, and using pain expressions both as a source of information and as a constraint on physical examination. Patient simulators can provide a safe learning platform to novice physicians before trying real patients. This paper reviews state-of-the-art medical simulators for the training for the first time with a consideration of providing multimodal feedback to learn as many manual examination techniques as possible. The study summarizes current advances in tissue examination training devices simulating different medical conditions and providing different types of feedback modalities. Opportunities with the development of pain expression, tissue modeling, actuation, and sensing are also analyzed to support the future design of effective tissue examination simulators
    • …
    corecore