69 research outputs found

    A web interface for meta-heuristics based grid schedulers

    Get PDF
    The use of meta-heuristics for designing efficient Grid schedulers is currently a common approach. One issue related to Grid based schedulers is their evaluation under different Grid configurations, such as dynamics of tasks and machines, task arrival, scheduling policies, etc. In this paper we present a web application that interfaces the final user with several meta-heuristics based Grid schedulers. The application interface facilities for each user the remote evaluation of the different heuristics, the configuration of the schedulers as well as the configuration of the Grid simulator under which the schedulers are run. The simulation results and traces are graphically represented and stored at the server and can retrieved in different formats such as spreadsheet form or pdf files. Historical executions are as well kept enabling a full study of use cases for different types of Grid schedulers. Thus, through this application the user can extract useful knowledge about the behavior of different schedulers by simulating realistic conditions of Grid system without needing to install and configure any specific software.Peer ReviewedPostprint (published version

    The Contemporary Affirmation of Taxonomy and Recent Literature on Workflow Scheduling and Management in Cloud Computing

    Get PDF
    The Cloud computing systemspreferred over the traditional forms of computing such as grid computing, utility computing, autonomic computing is attributed forits ease of access to computing, for its QoS preferences, SLA2019;s conformity, security and performance offered with minimal supervision. A cloud workflow schedule when designed efficiently achieves optimalre source sage, balance of workloads, deadline specific execution, cost control according to budget specifications, efficient consumption of energy etc. to meet the performance requirements of today2019; svast scientific and business requirements. The businesses requirements under recent technologies like pervasive computing are motivating the technology of cloud computing for further advancements. In this paper we discuss some of the important literature published on cloud workflow scheduling

    Hybrid Meta-heuristic Algorithms for Static and Dynamic Job Scheduling in Grid Computing

    Get PDF
    The term ’grid computing’ is used to describe an infrastructure that connects geographically distributed computers and heterogeneous platforms owned by multiple organizations allowing their computational power, storage capabilities and other resources to be selected and shared. Allocating jobs to computational grid resources in an efficient manner is one of the main challenges facing any grid computing system; this allocation is called job scheduling in grid computing. This thesis studies the application of hybrid meta-heuristics to the job scheduling problem in grid computing, which is recognized as being one of the most important and challenging issues in grid computing environments. Similar to job scheduling in traditional computing systems, this allocation is known to be an NPhard problem. Meta-heuristic approaches such as the Genetic Algorithm (GA), Variable Neighbourhood Search (VNS) and Ant Colony Optimisation (ACO) have all proven their effectiveness in solving different scheduling problems. However, hybridising two or more meta-heuristics shows better performance than applying a stand-alone approach. The new high level meta-heuristic will inherit the best features of the hybridised algorithms, increasing the chances of skipping away from local minima, and hence enhancing the overall performance. In this thesis, the application of VNS for the job scheduling problem in grid computing is introduced. Four new neighbourhood structures, together with a modified local search, are proposed. The proposed VNS is hybridised using two meta-heuristic methods, namely GA and ACO, in loosely and strongly coupled fashions, yielding four new sequential hybrid meta-heuristic algorithms for the problem of static and dynamic single-objective independent batch job scheduling in grid computing. For the static version of the problem, several experiments were carried out to analyse the performance of the proposed schedulers in terms of minimising the makespan using well known benchmarks. The experiments show that the proposed schedulers achieved impressive results compared to other traditional, heuristic and meta-heuristic approaches selected from the bibliography. To model the dynamic version of the problem, a simple simulator, which uses the rescheduling technique, is designed and new problem instances are generated, by using a well-known methodology, to evaluate the performance of the proposed hybrid schedulers. The experimental results show that the use of rescheduling provides significant improvements in terms of the makespan compared to other non-rescheduling approaches

    Data and Task Scheduling in Distributed Computing Environments, Journal of Telecommunications and Information Technology, 2014, nr 4

    Get PDF
    ecome a major research and engineering issue. Data Grids (DGs), Data Clouds (DCs) and Data Centers are designed for supporting the processing and analysis of massive data, which can be generated by distributed users, devices and computing centers. Data scheduling must be considered jointly with the application scheduling process. It generates a wide family of global optimization problems with the new scheduling criteria including data transmission time, data access and processing times, reliability of the data servers, security in the data processing and data access processes. In this paper, a new version of the Expected Time to Compute Matrix (ETC Matrix) model is defined for independent batch scheduling in physical network in DG and DC environments. In this model, the completion times of the computing nodes are estimated based on the standard ETC Matrix and data transmission times. The proposed model has been empirically evaluated on the static grid scheduling benchmark by using the simple genetic-based schedulers. A simple comparison of the achieved results for two basic scheduling metrics, namely makespan and average flowtime, with the results generated in the case of ignoring the data scheduling phase show the significant impact of the data processing model on the schedule execution times

    An Advanced Technique for User Identification Using Partial Fingerprint

    Get PDF
    User identification is a very interesting and complex task. Invasive biometrics is based on traits uniqueness and immutability over time. In forensic field, fingerprints have always been considered an essential element for personal recognition. The traditional issue is focused on full fingerprint images matching. In this paper an advanced technique for personal recognition based on partial fingerprint is proposed. This system is based on fingerprint local analysis and micro-features, endpoints and bifurcations, extraction. The proposed approach starts from minutiae extraction from a partial fingerprint image and ends with the final matching score between fingerprint pairs. The computation of likelihood ratios in fingerprint identification is computed by trying every possible overlapping of the partial image with complete image. The first experimental results conducted on the PolyU (Hong Kong Polytechnic University) free database show an encouraging performance in terms of identification accuracy

    Speeding up Energy System Models - a Best Practice Guide

    Get PDF
    Background Energy system models (ESM) are widely used in research and industry to analyze todays and future energy systems and potential pathways for the European energy transition. Current studies address future policy design, analysis of technology pathways and of future energy systems. To address these questions and support the transformation of today’s energy systems, ESM have to increase in complexity to provide valuable quantitative insights for policy makers and industry. Especially when dealing with uncertainty and in integrating large shares of renewable energies, ESM require a detailed implementation of the underlying electricity system. The increased complexity of the models makes the application of ESM more and more difficult, as the models are limited by the available computational power of today’s decentralized workstations. Severe simplifications of the models are common strategies to solve problems in a reasonable amount of time – naturally significantly influencing the validity of results and reliability of the models in general. Solutions for Energy-System Modelling Within BEAM-ME a consortium of researchers from different research fields (system analysis, mathematics, operations research and informatics) develop new strategies to increase the computational performance of energy system models and to transform energy system models for usage on high performance computing clusters. Within the project, an ESM will be applied on two of Germany’s fastest supercomputers. To further demonstrate the general application of named techniques on ESM, a model experiment is implemented as part of the project. Within this experiment up to six energy system models will jointly develop, implement and benchmark speed-up methods. Finally, continually collecting all experiences from the project and the experiment, identified efficient strategies will be documented and general standards for increasing computational performance and for applying ESM to high performance computing will be documented in a best-practice guide

    Cybersecurity of Digital Service Chains

    Get PDF
    This open access book presents the main scientific results from the H2020 GUARD project. The GUARD project aims at filling the current technological gap between software management paradigms and cybersecurity models, the latter still lacking orchestration and agility to effectively address the dynamicity of the former. This book provides a comprehensive review of the main concepts, architectures, algorithms, and non-technical aspects developed during three years of investigation; the description of the Smart Mobility use case developed at the end of the project gives a practical example of how the GUARD platform and related technologies can be deployed in practical scenarios. We expect the book to be interesting for the broad group of researchers, engineers, and professionals daily experiencing the inadequacy of outdated cybersecurity models for modern computing environments and cyber-physical systems
    corecore