210 research outputs found

    Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review

    Get PDF
    The coastal zone offers among the world’s most productive and valuable ecosystems and is experiencing increasing pressure from anthropogenic impacts: human settlements, agriculture, aquaculture, trade, industrial activities, oil and gas exploitation and tourism. Earth observation has great capability to deliver valuable data at the local, regional and global scales and can support the assessment and monitoring of land‐ and water‐related applications in coastal zones. Compared to optical satellites, cloud‐cover does not limit the timeliness of data acquisition with spaceborne Synthetic Aperture Radar (SAR) sensors, which have all‐weather, day and night capabilities. Hence, active radar systems demonstrate great potential for continuous mapping and monitoring of coastal regions, particularly in cloud‐prone tropical and sub‐tropical climates. The canopy penetration capability with long radar wavelength enables L‐band SAR data to be used for coastal terrestrial environments and has been widely applied and investigated for the following geoscientific topics: mapping and monitoring of flooded vegetation and inundated areas; the retrieval of aboveground biomass; and the estimation of soil moisture. Human activities, global population growth, urban sprawl and climate change‐induced impacts are leading to increased pressure on coastal ecosystems causing land degradation, deforestation and land use change. This review presents a comprehensive overview of existing research articles that apply spaceborne L‐band SAR data for geoscientific analyses that are relevant for coastal land applications

    Airborne and spaceborne remote sensing for assessment of forest structural attributes across tropical mosaic landscapes

    Get PDF
    High-resolution, accurate, and updated forest structure maps are urgently required for the implementation of REDD+, payment of ecosystem services, and other climate change mitigation strategies in tropical countries. The collection of forest inventory data is usually labor intensive and costly, and remote sites can be difficult to access. Remote sensing data, for example airborne laser scanning (ALS), hyperspectral imagery, and Landsat data, complement field-based forest inventories and provide high-resolution, accurate, and spatially explicit data for mapping forest structural attributes. However, issues such as the effect of topography, pulse density, and the single and combined use of various remote sensing data on forest structural attributes prediction warrant further research. The main objective of this thesis was to assess airborne and spaceborne remote sensing techniques for modeling forest structural attributes across a montane forest landscape in the Taita Hills, Kenya. The sub-objectives focused on a) the effect of the topographic normalization of Landsat images on fractional cover (Fcover) prediction, aboveground biomass (AGB), and forest structural heterogeneity modeling using ALS and other remote sensing data and b) the analysis of the maps of forest structural attributes. In Study I, the effect of topographic normalization on ALS-based Fcover modeling was evaluated using common vegetation indices and spectral-temporal metrics based on a Landsat time series (LTS). The results demonstrate that the fit of the Fcover models did not improve after topographic normalization in the case of ratio-based vegetation indices (Normalized Difference Vegetation Index, NDVI; reduced simple ratio, RSR) or tasseled cap (TC) greenness; however, the fit improved in the case of brightness and wetness, particularly in the period of the lowest sun elevation. However, if TC indices are preferred, then topographic normalization using a Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) is recommended. In Study II, field-based AGB estimates are modeled by ALS data and a multiple linear regression. The plot-level AGB was modeled with a coefficient of determination (R2) of 0.88 and a root mean square error (RMSE) of 52.9 Mg ha-1. Furthermore, the determinants for AGB spatial distribution are examined using geospatial data and statistical modeling. The AGB patterns are controlled mainly by mean annual precipitation (MAP), the distribution of croplands, and slope, which collectively explained 69.8% of the AGB variation. Study III investigated whether the fusion of ALS with LTS and hyperspectral data, or stratification of the plots to the forest and non-forest classes, improves AGB modeling. According to the results, the prediction model based on ALS data only provides accurate models even without stratification. However, using ALS and HS data together, and employing an additional forest classification for stratification, improves the model accuracy considerably in the studied landscape. Finally, in Study IV, the potential of single and combined ALS and LTS data in modeling forest structural heterogeneity (the Gini coefficient of tree size) was assessed, and the difference between three forest remnants and forest types is evaluated based on predicted maps. If the LTS metrics were included in the models, then ALS data with lower pulse density yield similar accuracy to more expensive, high pulse-density data. Furthermore, the GC map presents forest structural heterogeneity patterns at the landscape scale a

    Remote Sensing of Aboveground Biomass in Tropical Secondary Forests: A Review

    Get PDF
    Tropical landscapes are, in general, a mosaic of pasture, agriculture, and forest undergoing various stages of succession. Forest succession is comprised of continuous structural changes over time and results in increases in aboveground biomass (AGB). New remote sensing methods, including sensors, image processing, statistical methods, and uncertainty evaluations, are constantly being developed to estimate biophysical forest changes. We review 318 peer-reviewed studies related to the use of remotely sensed AGB estimations in tropical forest succession studies and summarize their geographic distribution, sensors and methods used, and their most frequent ecological inferences. Remotely sensed AGB is broadly used in forest management studies, conservation status evaluations, carbon source and sink investigations, and for studies of the relationships between environmental conditions and forest structure. Uncertainties in AGB estimations were found to be heterogeneous with biases related to sensor type, processing methodology, ground truthing availability, and forest characteristics. Remotely sensed AGB of successional forests is more reliable for the study of spatial patterns of forest succession and over large time scales than that of individual stands. Remote sensing of temporal patterns in biomass requires further study, in particular, as it is critical for understanding forest regrowth at scales useful for regional or global analyses

    Will Remote Sensing Shape the Next Generation of Species Distribution Models?

    Get PDF
    Two prominent limitations of species distribution models (SDMs) are spatial biases in existing occurrence data and a lack of spatially explicit predictor variables to fully capture habitat characteristics of species. Can existing and emerging remote sensing technologies meet these challenges and improve future SDMs? We believe so. Novel products derived from multispectral and hyperspectral sensors, as well as future Light Detection and Ranging (LiDAR) and RADAR missions, may play a key role in improving model performance. In this perspective piece, we demonstrate how modern sensors onboard satellites, planes and unmanned aerial vehicles are revolutionizing the way we can detect and monitor both plant and animal species in terrestrial and aquatic ecosystems as well as allowing the emergence of novel predictor variables appropriate for species distribution modeling. We hope this interdisciplinary perspective will motivate ecologists, remote sensing experts and modelers to work together for developing a more refined SDM framework in the near future

    The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation

    Get PDF
    This Synthetic Aperture Radar (SAR) handbook of applied methods for forest monitoring and biomass estimation has been developed by SERVIR in collaboration with SilvaCarbon to address pressing needs in the development of operational forest monitoring services. Despite the existence of SAR technology with all-weather capability for over 30 years, the applied use of this technology for operational purposes has proven difficult. This handbook seeks to provide understandable, easy-to-assimilate technical material to remote sensing specialists that may not have expertise on SAR but are interested in leveraging SAR technology in the forestry sector

    The global tree carrying capacity (keynote)

    Full text link
    editorial reviewe

    Earth resources: A continuing bibliography with indexes (issue 60)

    Get PDF
    This bibliography lists 485 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors
    corecore