5,282 research outputs found

    Image mining: trends and developments

    Get PDF
    [Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in very large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining

    Hybrid image representation methods for automatic image annotation: a survey

    Get PDF
    In most automatic image annotation systems, images are represented with low level features using either global methods or local methods. In global methods, the entire image is used as a unit. Local methods divide images into blocks where fixed-size sub-image blocks are adopted as sub-units; or into regions by using segmented regions as sub-units in images. In contrast to typical automatic image annotation methods that use either global or local features exclusively, several recent methods have considered incorporating the two kinds of information, and believe that the combination of the two levels of features is beneficial in annotating images. In this paper, we provide a survey on automatic image annotation techniques according to one aspect: feature extraction, and, in order to complement existing surveys in literature, we focus on the emerging image annotation methods: hybrid methods that combine both global and local features for image representation

    Improving self-organising information maps as navigational tools: A semantic approach

    Get PDF
    Purpose - The goal of the research is to explore whether the use of higher-level semantic features can help us to build better self-organising map (SOM) representation as measured from a human-centred perspective. The authors also explore an automatic evaluation method that utilises human expert knowledge encapsulated in the structure of traditional textbooks to determine map representation quality. Design/methodology/approach - Two types of document representations involving semantic features have been explored - i.e. using only one individual semantic feature, and mixing a semantic feature with keywords. Experiments were conducted to investigate the impact of semantic representation quality on the map. The experiments were performed on data collections from a single book corpus and a multiple book corpus. Findings - Combining keywords with certain semantic features achieves significant improvement of representation quality over the keywords-only approach in a relatively homogeneous single book corpus. Changing the ratios in combining different features also affects the performance. While semantic mixtures can work well in a single book corpus, they lose their advantages over keywords in the multiple book corpus. This raises a concern about whether the semantic representations in the multiple book corpus are homogeneous and coherent enough for applying semantic features. The terminology issue among textbooks affects the ability of the SOM to generate a high quality map for heterogeneous collections. Originality/value - The authors explored the use of higher-level document representation features for the development of better quality SOM. In addition the authors have piloted a specific method for evaluating the SOM quality based on the organisation of information content in the map. © 2011 Emerald Group Publishing Limited

    Navigating Diverse Datasets in the Face of Uncertainty

    Get PDF
    When exploring big volumes of data, one of the challenging aspects is their diversity of origin. Multiple files that have not yet been ingested into a database system may contain information of interest to a researcher, who must curate, understand and sieve their content before being able to extract knowledge. Performance is one of the greatest difficulties in exploring these datasets. On the one hand, examining non-indexed, unprocessed files can be inefficient. On the other hand, any processing before its understanding introduces latency and potentially un- necessary work if the chosen schema matches poorly the data. We have surveyed the state-of-the-art and, fortunately, there exist multiple proposal of solutions to handle data in-situ performantly. Another major difficulty is matching files from multiple origins since their schema and layout may not be compatible or properly documented. Most surveyed solutions overlook this problem, especially for numeric, uncertain data, as is typical in fields like astronomy. The main objective of our research is to assist data scientists during the exploration of unprocessed, numerical, raw data distributed across multiple files based solely on its intrinsic distribution. In this thesis, we first introduce the concept of Equally-Distributed Dependencies, which provides the foundations to match this kind of dataset. We propose PresQ, a novel algorithm that finds quasi-cliques on hypergraphs based on their expected statistical properties. The probabilistic approach of PresQ can be successfully exploited to mine EDD between diverse datasets when the underlying populations can be assumed to be the same. Finally, we propose a two-sample statistical test based on Self-Organizing Maps (SOM). This method can outperform, in terms of power, other classifier-based two- sample tests, being in some cases comparable to kernel-based methods, with the advantage of being interpretable. Both PresQ and the SOM-based statistical test can provide insights that drive serendipitous discoveries
    • 

    corecore