28,973 research outputs found

    Decision Fusion in Non-stationary Environments

    Get PDF
    A parallel distributed detection system consists of multiple local sensors/detectors that observe a phenomenon and process the gathered observations using inbuilt processing capabilities. The end product of the local processing is transmitted from each sensor/detector to a centrally located data fusion center for integration and decision making. The data fusion center uses a specific optimization criterion to obtain global decisions about the environment seen by the sensors/detectors. In this study, the overall objective is to make a globally-optimal binary (target/non-target) decision with respect to a Bayesian cost, or to satisfy the Neyman-Pearson criterion. We also note that in some cases a globally-optimal Bayesian decision is either undesirable or impractical, in which case other criteria or localized decisions are used. In this thesis, we investigate development of several fusion algorithms under different constraints including sequential availability of data and dearth of statistical information. The main contribution of this study are: (1) an algorithm that provides a globally optimal solution for local detector design that satisfies a Neyman-Pearson criterion for systems with identical local sensors; (2) an adaptive fusion algorithm that fuses local decisions without a prior knowledge of the local sensor performance; and (3) a fusion rule that applies a genetic In addition, we develop a parallel decision fusion system where each local sensor is a sequential decision maker that implements the modified Wald's sequential probability test (SPRT) as proposed by Lee and Thomas (1984).Ph.D., Electrical Engineering -- Drexel University, 201

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Development of a fusion adaptive algorithm for marine debris detection within the post-Sandy restoration framework

    Get PDF
    Recognition of marine debris represent a difficult task due to the extreme variability of the marine environment, the possible targets, and the variable skill levels of human operators. The range of potential targets is much wider than similar fields of research such as mine hunting, localization of unexploded ordnance or pipeline detection. In order to address this additional complexity, an adaptive algorithm is being developing that appropriately responds to changes in the environment, and context. The preliminary step is to properly geometrically and radiometrically correct the collected data. Then, the core engine manages the fusion of a set of statistically- and physically-based algorithms, working at different levels (swath, beam, snippet, and pixel) and using both predictive modeling (that is, a high-frequency acoustic backscatter model) and phenomenological (e.g., digital image processing techniques) approaches. The expected outcome is the reduction of inter-algorithmic cross-correlation and, thus, the probability of false alarm. At this early stage, we provide a proof of concept showing outcomes from algorithms that dynamically adapt themselves to the depth and average backscatter level met in the surveyed environment, targeting marine debris (modeled as objects of about 1-m size). The project relies on a modular software library, called Matador (Marine Target Detection and Object Recognition)

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers
    • …
    corecore