163 research outputs found

    Study of real-time traffic state estimation and short-term prediction of signalized arterial network considering heterogeneous information sources

    Get PDF
    Compared with a freeway network, real-time traffic state estimation and prediction of a signalized arterial network is a challenging yet under-studied field. Starting from discussing the arterial traffic flow dynamics, this study proposes a novel framework for real-time traffic state estimation and short-term prediction for signalized corridors. Particle filter techniques are used to integrate field measurements from different sources to improve the accuracy and robustness of the model. Several comprehensive numerical studies based on both real world and simulated datasets showed that the proposed model can generate reliable estimation and short-term prediction of different traffic states including queue length, flow density, speed and travel time with a high degree of accuracy. The proposed model can serve as the key component in both ATIS (Advanced Traveler's Information System) and proactive traffic control system

    Data Support of Advanced Traveler Information System Considering Connected Vehicle Technology

    Get PDF
    Traveler information systems play a significant role in most travelers’ daily trips. These systems assist travelers in choosing the best routes to reach their destinations and possibly select suitable departure times and modes for their trips. Connected Vehicle (CV) technologies are now in the pilot program stage. Vehicle-to-Infrastructure (V2I) communications will be an important source of data for traffic agencies. If this data is processed properly, then agencies will be able to better determine traffic conditions, allowing them to take proper countermeasures to remedy transportation system problems under different conditions. This research focuses on developing methods to assess the potential of utilizing CV data to support the traveler information system data collection process. The results from the assessment can be used to establish a timeline indicating when an agency can stop investing, at least partially, in traditional technologies, and instead rely on CV technologies for traveler information system support. This research utilizes real-world vehicle trajectory data collected under the Next Generation Simulation (NGSIM) program and simulation modeling to emulate the use of connected vehicle data to support the traveler information system. NGSIM datasets collected from an arterial segment and a freeway segment are used in this research. Microscopic simulation modeling is also used to generate required trajectory data, allowing further analysis, which is not possible using NGSIM data. The first step is to predict the market penetration of connected vehicles in future years. This estimated market penetration is then used for the evaluation of the effectiveness of CV-based data for travel time and volume estimation, which are two important inputs for the traveler information system. The travel times are estimated at different market penetrations of CV. The quality of the estimation is assessed by investigating the accuracy and reliability with different CV deployment scenarios. The quality of volume estimates is also assessed using the same data with different future scenarios of CV deployment and partial or no detector data. Such assessment supports the identification of a timeline indicating when CV data can be used to support the traveler information system

    Traffic modeling, estimation and control for large-scale congested urban networks

    Get PDF
    Part I of the thesis investigates novel urban traffic state estimation methods utilizing probe vehicle data. Chapter 2 proposes a method to integrate the collective effect of dispersed probe data with traffic kinematic wave theory and data mining techniques to model the spatial and temporal dynamics of queue formation and dissipation in arterials. The queue estimation method captures interdependencies in queue evolutions of successive intersections, and moreover, the method is applicable in oversaturated conditions and includes a queue spillover statistical inference procedure. Chapter 3 develops a travel time reliability model to estimate arterial route travel times distribution (TTD) considering spatial and temporal correlations between traffic states in consecutive links. The model uses link-level travel time data and a heuristic grid clustering method to estimate the state structure and transition probabilities of a Markov chain. By applying the Markov chain procedure, the correlation between states of successive links is integrated and the route-level TTD is estimated. The methods in Part I are tested with various probe vehicle penetration rates on case studies with field measurements and simulated data. The methods are straightforward in implementation and have demonstrated promising performance and accuracy through numerous experiments. Part II studies network-level modeling and control of large-scale urban networks. Chapter 4 is the pioneer that introduces the urban perimeter control for two-region urban cities as an elegant control strategy to decrease delays in urban networks. Perimeter controllers operate on the border between the two regions, and manipulate the percentages of transfer flows between the two regions, such that the number of trips reaching their destinations is maximized. The optimal perimeter control problem is solved by the model predictive control (MPC) scheme, where the prediction model and the plant (reality) are formulated by macroscopic fundamental diagrams (MFD). Chapter 5 extends the perimeter control strategy and MFD modeling to mixed urban-freeway networks to provide a holistic approach for large-scale integrated corridor management (ICM). The network consists of two urban regions, each one with a well-defined MFD, and a freeway, modeled by the asymmetric cell transmission model, that is an alternative commuting route which has one on-ramp and one off-ramp within each urban region. The optimal traffic control problem is solved by the MPC approach to minimize total delay in the entire network considering several control policies with different levels of urban-freeway control coordination. Chapter 6 integrates traffic heterogeneity dynamics in large-scale urban modeling and control to develop a hierarchical control strategy for heterogeneously congested cities. Two aggregated models, region- and subregion-based MFDs, are introduced to study the effect of link density heterogeneity on the scatter and hysteresis of MFD. A hierarchical perimeter flow control problem is proposed to minimize the network delay and to homogenize the distribution of congestion. The first level of the hierarchical control problem is solved by the MPC approach, where the prediction model is the aggregated parsimonious region-based MFD and the plant is the subregion-based MFD, which is a more detailed model. At the lower level, a feedback controller tries to maximize the network outflow, by increasing regional homogeneity

    A review of travel time estimation and forecasting for advanced traveler information systems

    Get PDF
    Providing on line travel time information to commuters has become an important issue for Advanced Traveler Information Systems and Route Guidance Systems in the past years, due to the increasing traffic volume and congestion in the road networks. Travel time is one of the most useful traffic variables because it is more intuitive than other traffic variables such as flow, occupancy or density, and is useful for travelers in decision making. The aim of this paper is to present a global view of the literature on the modeling of travel time, introducing crucial concepts and giving a thorough classification of the existing tech- niques. Most of the attention will focus on travel time estimation and travel time prediction, which are generally not presented together. The main goals of these models, the study areas and methodologies used to carry out these tasks will be further explored and categorized

    Monitoring Traffic and Emissions by Floating Car Data

    Get PDF
    Intelligent traffic management is widely acknowledged as a means to optimise the utilisation of existing infrastructure capacities. A major requirement for intelligent traffic management is the collection of high quality data on traffic conditions in order to generate accurate real-time traffic information. The approach to be described here generates this information by a fleet of taxis equipped with GPS which act as Floating-Car-Data (FCD) provider for a number of metropolitan areas. The first part of this paper describes the methodology of setting up this data base. The information collected enables various applications such as real-time traffic monitoring, time-dynamic routing and fleet management. The second part of the paper proposes a framework for using these data additionally to include environmental effects into intelligent traffic management systems. To this end, a mapping between travel times and traffic flows is proposed. Some challenges related to the computation of emissions from velocity profiles are discussed. Equipped with these ingredients, an environmentally friendly intelligent traffic management might be in reach

    Characterizing Queue Dynamics at Signalized Intersections From Probe Vehicle Data

    Get PDF
    Probe vehicles instrumented with location-tracking technologies have become increasingly popular for collecting traffic flow data. While probe vehicle data have been used for estimating speeds and travel times, there has been limited research on predicting queuing dynamics from such data. In this research, a methodology is developed for identifying the travel lanes of the GPS-instrumented vehicles when they are standing in a queue at signalized intersections with multilane approaches. In particular, the proposed methodology exploits the unequal queue lengths across the lanes to infer the specific lanes the probe vehicles occupy. Various supervised and unsupervised clustering methods were developed and tested on data generated from a microsimulation model. The generated data included probe vehicle positions and shockwave speeds predicated on their trajectories. Among the tested methods, a Bayesian approach that employs probability density functions estimated by bivariate statistical mixture models was found to be effective in identifying the lanes. The results from lane identification were then used to predict queue lengths for each travel lane. Subsequently, the trajectories for non-probe vehicles within the queue were predicted. As a potential application, fuel consumption for all vehicles in the queue is estimated and evaluated for accuracy. The accuracies of the models for lane identification. queue length prediction, and fuel consumption estimation were evaluated at varying levels of demand and probe-vehicle market penetrations. In general, as the market penetration increases, the accuracy improves. For example. when the market penetration rate is about 40%, the queue length estimation accuracy reaches 90%. The dissertation includes various numerical experiments and the performance of the models under numerous scenarios

    Probabilistic travel time progression and its application to automatic vehicle identification data

    Get PDF
    Travel time has been identified as an important variable to evaluate the performance of a transportation system. Based on the travel time prediction, road users can make their optimal decision in choosing route and departure time. In order to utilise adequately the advanced data collection methods that provide real-time different types of information, this paper is aimed at a novel approach to the estimation of long roadway travel times, using Automatic Vehicle Identification (AVI) technology. Since the long roads contain a large number of scanners, the AVI sample size tends to reduce and, as such, computing the distribution for the total road travel time becomes difficult. In this work, we introduce a probabilistic framework that extends the deterministic travel time progression method to dependent random variables and enables the off-line estimation of road travel time distributions. In the proposed method, the accuracy of the estimation does not depend on the size of the sample over the entire corridor, but only on the amount of historical data that is available for each link. In practice, the system is also robust to small link samples and can be used to detect outliers within the AVI data

    Development and evaluation of advanced traveler information system (ATIS) using vehicle-to-vehicle (V2V) communication system

    Get PDF
    This research develops and evaluates an Advanced Traveler Information System (ATIS) model using a Vehicle-to-Vehicle (V2V) communication system (referred to as the GATIS-V2V model) with the off-the-shelf microscopic simulation model, VISSIM. The GATIS-V2V model is tested on notional small traffic networks (non-signalized and signalized) and a 6X6 typical urban grid network (signalized traffic network). The GATIS-V2V model consists of three key modules: vehicle communication, on-board travel time database management, and a Dynamic Route Guidance System (DRGS). In addition, the system performance has been enhanced by applying three complementary functions: Autonomous Automatic Incident Detection (AAID), a minimum sample size algorithm, and a simple driver behavior model. To select appropriate parameter ranges for the complementary functions a sensitivity analysis has been conducted. The GATIS-V2V performance has been investigated relative to three underlying system parameters: traffic flow, communication radio range, and penetration ratio of participating vehicles. Lastly, the enhanced GATIS-V2V model is compared with the centralized traffic information system. This research found that the enhanced GATIS-V2V model outperforms the basic model in terms of travel time savings and produces more consistent and robust system output under non-recurrent traffic states (i.e., traffic incident) in the simple traffic network. This research also identified that the traffic incident detection time and driver's route choice rule are the most crucial factors influencing the system performance. As expected, as traffic flow and penetration ratio increase, the system becomes more efficient, with non-participating vehicles also benefiting from the re-routing of participating vehicles. The communication radio ranges considered were found not to significantly influence system operations in the studied traffic network. Finally, it is found that the decentralized GATIS-V2V model has similar performance to the centralized model even under low flow, short radio range, and low penetration ratio cases. This implies that a dynamic infrastructure-based traffic information system could replace a fixed infrastructure-based traffic information system, allowing for considerable savings in fixed costs and ready expansion of the system off of the main network corridors.Ph.D.Committee Chair: Hunter, Michael; Committee Member: Fujimoto, Richard; Committee Member: Guensler, Randall; Committee Member: Leonard, John; Committee Member: Meyer, Michae

    Estimation and Prediction of Mobility and Reliability Measures Using Different Modeling Techniques

    Get PDF
    The goal of this study is to investigate the predictive ability of less data intensive but widely accepted methods to estimate mobility and reliability measures. Mobility is a relatively mature concept in the traffic engineering field. Therefore, many mobility measure estimation methods are already available and widely accepted among practitioners and researchers. However, each method has their inherent weakness, particularly when they are applied and compared with real-world data. For instances, Bureau of Public Roads (BPR) Curves are very popular in static route choice assignment, as part of demand forecasting models, but it is often criticized for underperforming in congested traffic conditions where demand exceeds capacity. This study applied five mobility estimation methods (BPR Curve, Akcelic Function, Florida State University (FSU) Regression Model, Queuing Theory, and Highway Capacity Manual (HCM) Facility Procedures) for different facility types (i.e. Freeway and Arterial) and time periods (AM Peak, Mid-Day, PM Peak). The study findings indicate that the methods were able to accurately predict mobility measures (e.g. speed and travel time) on freeways, particularly when there was no congestion and the volume was less than the capacity. In the presence of congestion, none of the mobility estimation methods predicted mobility measures closer to the real-world measure. However, compared with the other prediction models, the HCM procedure method was able to predict mobility measures better. On arterials, the mobility measure predictions were not close to the real-world measurements, not even in the uncongested periods (i.e. AM Peak and Mid-Day). However, the predictions are relatively better in the AM and Mid-Day periods that have lower volume/capacity ration compared to the PM Peak period. To estimate reliability measures, the study applied three products from the Second Strategic Highway Research Program (SHRP2) projects (Project Number L03, L07, and C11) to estimate three reliability measures; the 80th percentile travel time index, 90th percentile travel time index, and 95th percentile travel time index. A major distinction between mobility estimation process and reliability estimation process lies in the fact that mobility can be estimated for any particular day, but reliability estimation requires a full year of data. Inclusion of incident days and weather condition are another important consideration for reliability measurements. The study found that SHRP2 products predicted reliability measures reasonably well for freeways for all time periods (except C11 in the PM Peak). On arterials, the reliability predictions were not close to the real-world measure, although the differences were not as drastic as seen in the case of arterial mobility measures
    corecore