44,140 research outputs found

    Next-Generation Sequencing:Application in Liver Cancer-Past, Present and Future?

    Get PDF
    Hepatocellular Carcinoma (HCC) is the third most deadly malignancy worldwide characterized by phenotypic and molecular heterogeneity. In the past two decades, advances in genomic analyses have formed a comprehensive understanding of different underlying pathobiological layers resulting in hepatocarcinogenesis. More recently, improvements of sophisticated next-generation sequencing (NGS) technologies have enabled complete and cost-efficient analyses of cancer genomes at a single nucleotide resolution and advanced into valuable tools in translational medicine. Although the use of NGS in human liver cancer is still in its infancy, great promise rests in the systematic integration of different molecular analyses obtained by these methodologies, i.e., genomics, transcriptomics and epigenomics. This strategy is likely to be helpful in identifying relevant and recurrent pathophysiological hallmarks thereby elucidating our limited understanding of liver cancer. Beside tumor heterogeneity, progress in translational oncology is challenged by the amount of biological information and considerable “noise” in the data obtained from different NGS platforms. Nevertheless, the following review aims to provide an overview of the current status of next-generation approaches in liver cancer, and outline the prospects of these technologies in diagnosis, patient classification, and prediction of outcome. Further, the potential of NGS to identify novel applications for concept clinical trials and to accelerate the development of new cancer therapies will be summarized

    Rapid creation and quantitative monitoring of high coverage shRNA libraries.

    Get PDF
    Short hairpin RNA libraries are limited by low efficacy of many shRNAs and by off-target effects, which give rise to false negatives and false positives, respectively. Here we present a strategy for rapidly creating expanded shRNA pools (approximately 30 shRNAs per gene) that are analyzed by deep sequencing (EXPAND). This approach enables identification of multiple effective target-specific shRNAs from a complex pool, allowing a rigorous statistical evaluation of true hits

    Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations

    Get PDF
    The HEK293 human cell lineage is widely used in cell biology and biotechnology. Here we use whole-genome resequencing of six 293 cell lines to study the dynamics of this aneuploid genome in response to the manipulations used to generate common 293 cell derivatives, such as transformation and stable clone generation (293T); suspension growth adaptation (293S); and cytotoxic lectin selection (293SG). Remarkably, we observe that copy number alteration detection could identify the genomic region that enabled cell survival under selective conditions (i.c. ricin selection). Furthermore, we present methods to detect human/vector genome breakpoints and a user-friendly visualization tool for the 293 genome data. We also establish that the genome structure composition is in steady state for most of these cell lines when standard cell culturing conditions are used. This resource enables novel and more informed studies with 293 cells, and we will distribute the sequenced cell lines to this effect

    Principles for the post-GWAS functional characterisation of risk loci

    Get PDF
    Several challenges lie ahead in assigning functionality to susceptibility SNPs. For example, most effect sizes are small relative to effects seen in monogenic diseases, with per allele odds ratios usually ranging from 1.15 to 1.3. It is unclear whether current molecular biology methods have enough resolution to differentiate such small effects. Our objective here is therefore to provide a set of recommendations to optimize the allocation of effort and resources in order maximize the chances of elucidating the functional contribution of specific loci to the disease phenotype. It has been estimated that 88% of currently identified disease-associated SNP are intronic or intergenic. Thus, in this paper we will focus our attention on the analysis of non-coding variants and outline a hierarchical approach for post-GWAS functional studies

    Pairwise gene GO-based measures for biclustering of high-dimensional expression data

    Get PDF
    Background: Biclustering algorithms search for groups of genes that share the same behavior under a subset of samples in gene expression data. Nowadays, the biological knowledge available in public repositories can be used to drive these algorithms to find biclusters composed of groups of genes functionally coherent. On the other hand, a distance among genes can be defined according to their information stored in Gene Ontology (GO). Gene pairwise GO semantic similarity measures report a value for each pair of genes which establishes their functional similarity. A scatter search-based algorithm that optimizes a merit function that integrates GO information is studied in this paper. This merit function uses a term that addresses the information through a GO measure. Results: The effect of two possible different gene pairwise GO measures on the performance of the algorithm is analyzed. Firstly, three well known yeast datasets with approximately one thousand of genes are studied. Secondly, a group of human datasets related to clinical data of cancer is also explored by the algorithm. Most of these data are high-dimensional datasets composed of a huge number of genes. The resultant biclusters reveal groups of genes linked by a same functionality when the search procedure is driven by one of the proposed GO measures. Furthermore, a qualitative biological study of a group of biclusters show their relevance from a cancer disease perspective. Conclusions: It can be concluded that the integration of biological information improves the performance of the biclustering process. The two different GO measures studied show an improvement in the results obtained for the yeast dataset. However, if datasets are composed of a huge number of genes, only one of them really improves the algorithm performance. This second case constitutes a clear option to explore interesting datasets from a clinical point of view.Ministerio de Economía y Competitividad TIN2014-55894-C2-
    corecore