196 research outputs found

    Data Mining Algorithms Predicting Different Types of Cancer: Integrative Literature Review

    Get PDF
    Based on the World Health Organization, cancer is the second leading cause of death globally and is responsible for an estimated 9.6 million deaths in 2018. Globally, about 1 in 6 deaths is due to cancer, and approximately 70% of deaths from cancer occur in low and middle-income countries. with accelerating developments in technologies and the digitization of healthcare, a lot of cancer\u27s data have been collected, and multiple cancer repositories have been created as a result. cancer has become a data-intensive area of research over the last decade. A large number of researchers have used data mining algorithms in predicting different types of cancer to reduce the cost of tests used to predict different types of cancer, especially in low and middle-income countries. This paper reports on a systematic examination of the literature on data mining algorithms predicting different types of cancer through which we provide a thorough review, analysis, and synthesis of research published in the past 10 years. We follow the systematic literature review methodology to examine theories, problems, methodologies, and major findings of related studies on data mining algorithms predicting cancer that were published between 2009 and 2019. Using thematic analysis, we develop a research taxonomy that summarizes the main algorithms used in the existing research in the field, and we identify the most used data mining algorithms in predicting different types of cancer. In addition, to data mining algorithms used in predicting each type of cancer, as mentioned in the reviewed studies. We also identify the most popular types of cancer that researchers tackled using predictive analytics

    ENDOMET database – A means to identify novel diagnostic and prognostic tools for endometriosis

    Get PDF
    Endometriosis is a common benign hormone reliant inflammatory gynecological disease that affects fertile aged women and has a considerable economic impact on healthcare systems. Symptoms include intense menstrual pain, persistent pelvic pain, and infertility. It is defined by the existence of endometrium-like tissue developing in ectopic locations outside the uterine cavity and inflammation in the peritoneal cavity. Endometriosis presents with multifactorial etiology, and despite extensive research the etiology is still poorly understood. Diagnostic delay from the onset of the disease to when a conclusive diagnosis is reached is between 7–12 years. There is no known cure, although symptoms can be improved with hormonal medications (which often have multiple side effects and prevent pregnancy), or through surgery which carries its own risk. Current non-invasive tools for diagnosis are not sufficiently dependable, and a definite diagnosis is achieved through laparoscopy or laparotomy. This study was based on two prospective cohorts: The ENDOMET study, including 137 endometriosis patients scheduled for surgery and 62 healthy women, and PROENDO that included 138 endometriosis patients and 33 healthy women. Our long-term goal with the current study was to support the discovery of innovative new tools for efficient diagnosis of endometriosis as well as tools to further understand the etiology and pathogenesis of the disease. We set about achieving this goal by creating a database, EndometDB, based on a relational data model, implemented with PostgreSQL programming language. The database allows e.g., for the exploration of global genome-wide expression patterns in the peritoneum, endometrium, and in endometriosis lesions of endometriosis patients as well as in the peritoneum and endometrium of healthy control women of reproductive age. The data collected in the EndometDB was also used for the development and validation of a symptom and biomarker-based predictive model designed for risk evaluation and early prediction of endometriosis without invasive diagnostic methods. Using the data in the EndometDB we discovered that compared with the eutopic endometrium, the WNT- signaling pathway is one of the molecular pathways that undergo strong changes in endometriosis. We then evaluated the potential role for secreted frizzled-related protein 2 (SFRP-2, a WNT-signaling pathway modulator), in improving endometriosis lesion border detection. The SFRP-2 expression visualizes the lesion better than previously used markers and can be used to better define lesion size and that the surgical excision of the lesions is complete.ENDOMET tietokanta – Keino tunnistaa uusi diagnostinen ja ennustava työkalu endometrioosille Endometrioosi on yleinen hyvänlaatuinen, hormoneista riippuvainen tulehduksellinen lisääntymisikäisten naisten gynekologinen sairaus, joka kuormittaa terveydenhuoltojärjestelmää merkittävästi. Endometrioositaudin oireita ovat mm. voimakas kuukautiskipu, jatkuva lantion alueen kipu ja hedelmättömyys. Sairaus määritellään kohdun limakalvon kaltaisen kudoksen esiintymisenä kohdun ulkopuolella sekä siihen liittyvänä vatsakalvon tulehduksena. Endometrioosin etiologia on monitahoinen, ja laajasta tutkimuksesta huolimatta edelleen huonosti tunnettu. Kesto taudin puhkeamisesta lopullisen diagnoosin saamiseen on usein jopa 7–12 vuotta. Sairauteen ei tunneta parannuskeinoa, mutta oireita voidaan lievittää esimerkiksi hormonaalisilla lääkkeillä (joilla on usein monia sivuvaikutuksia ja jotka estävät raskauden) tai leikkauksella, johon liittyy omat tunnetut riskit. Nykyiset ei-invasiiviset diagnoosityökalut eivät ole riittävän luotettavia sairauden tunnistamiseen, ja varma endometrioosin diagnoosi saavutetaan laparoskopian tai laparotomian avulla. Tämä tutkimus perustui kahteen prospektiiviseen kohorttiin: ENDOMET-tutkimuk-seen, johon osallistui 137 endometrioosipotilasta ja 62 terveellistä naista, sekä PROENDO-tutkimukseen, johon osallistui 138 endometrioosipotilasta ja 33 terveellistä naista. Tässä tutkimuksessa pitkän aikavälin tavoitteemme oli löytää uusia työkalujen endometrioosin diagnosointiin, sekä ymmärtää endometrioosin etiologiaa ja patogeneesiä. Ensimmäisessä vaiheessa loimme EndometDB –tietokannan PostgreSQL-ohjelmointi-kielellä. Tämän osittain avoimeen käyttöön vapautetun tietokannan avulla voidaan tutkia genomin, esimerkiksi kaikkien tunnettujen geenien ilmentymistä peritoneumissa, endo-metriumissa ja endometrioosipotilaiden endometrioosileesioissa EndometDB-tietokantaan kerättyjä tietoja käytettiin oireiden ja biomarkkeripohjaisen ennustemallin kehittämiseen ja validointiin. Malli tuottaa riskinarvioinnin endometrioositaudin varhaiseen ennustamiseen ilman laparoskopiaa. Käyttäen EndometDB-tietokannan tietoja havaitsimme, että endo-metrioositautikudoksessa tapahtui voimakkaita geeni-ilmentymisen muutoksia erityisesti geeneissä, jotka liittyvät WNT-signalointireitin säätelyyn. Keskeisin löydös oli, että SFRP-2 proteiinin ilmentyminen oli huomattavasti koholla endometrioosikudoksessa ja SFRP-2 proteiinin immunohistokemiallinen värjäys erottaa endometrioosin tautikudoksen terveestä kudoksesta aiempia merkkiaineita paremmin. Löydetyllä menetelmällä voidaan siten selvittää tautikudoksen laajuus ja tarvittaessa osoittaa, että leikkauksella on kyetty poistamaan koko sairas kudos

    An Integrated Approach for Cancer Survival Prediction Using Data Mining Techniques

    Get PDF
    Ovarian cancer is the third most common gynecologic cancers worldwide. Advanced ovarian cancer patients bear a significant mortality rate. Survival estimation is essential for clinicians and patients to understand better and tolerate future outcomes. The present study intends to investigate different survival predictors available for cancer prognosis using data mining techniques. Dataset of 140 advanced ovarian cancer patients containing data from different data profiles (clinical, treatment, and overall life quality) has been collected and used to foresee cancer patients’ survival. Attributes from each data profile have been processed accordingly. Clinical data has been prepared corresponding to missing values and outliers. Treatment data including varying time periods were created using sequence mining techniques to identify the treatments given to the patients. And lastly, different comorbidities were combined into a single factor by computing Charlson Comorbidity Index for each patient. After appropriate preprocessing, the integrated dataset is classified using appropriate machine learning algorithms. The proposed integrated model approach gave the highest accuracy of 76.4% using ensemble technique with sequential pattern mining including time intervals of 2 months between treatments. Thus, the treatment sequences and, most importantly, life quality attributes significantly contribute to the survival prediction of cancer patients

    Translational Bioinformatics for Human Reproductive Biology Research: Examples, Opportunities and Challenges for a Future Reproductive Medicine

    Get PDF
    Since 1978, with the first IVF (in vitro fertilization) baby birth in Manchester (England), more than eight million IVF babies have been born throughout the world, and many new techniques and discoveries have emerged in reproductive medicine. To summarize the modern technology and progress in reproductive medicine, all scientific papers related to reproductive medicine, especially papers related to reproductive translational medicine, were fully searched, manually curated and reviewed. Results indicated whether male reproductive medicine or female reproductive medicine all have made significant progress, and their markers have experienced the progress from karyotype analysis to single-cell omics. However, due to the lack of comprehensive databases, especially databases collecting risk exposures, disease markers and models, prevention drugs and effective treatment methods, the application of the latest precision medicine technologies and methods in reproductive medicine is limited.This research was funded by Project of Natural Science Foundation of Gansu Province (20JR5RA363); Project of Gansu Provincial Education Department (2020B-003)

    A survey on computational intelligence approaches for predictive modeling in prostate cancer

    Get PDF
    Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be modelled are too complex forconventional statistical techniques to process quickly and eciently. These advanced approaches are based on mathematical models that have been especially developed for dealing with the uncertainty and imprecision which is typically found in clinical and biological datasets. This paper provides a survey of recent work on computational intelligence approaches that have been applied to prostate cancer predictive modeling, and considers the challenges which need to be addressed. In particular, the paper considers a broad definition of computational intelligence which includes evolutionary algorithms (also known asmetaheuristic optimisation, nature inspired optimisation algorithms), Artificial Neural Networks, Deep Learning, Fuzzy based approaches, and hybrids of these,as well as Bayesian based approaches, and Markov models. Metaheuristic optimisation approaches, such as the Ant Colony Optimisation, Particle Swarm Optimisation, and Artificial Immune Network have been utilised for optimising the performance of prostate cancer predictive models, and the suitability of these approaches are discussed

    Combining Molecular, Imaging, and Clinical Data Analysis for Predicting Cancer Prognosis

    Get PDF
    Cancer is one of the most detrimental diseases globally. Accordingly, the prognosis prediction of cancer patients has become a field of interest. In this review, we have gathered 43 stateof- the-art scientific papers published in the last 6 years that built cancer prognosis predictive models using multimodal data. We have defined the multimodality of data as four main types: clinical, anatomopathological, molecular, and medical imaging; and we have expanded on the information that each modality provides. The 43 studies were divided into three categories based on the modelling approach taken, and their characteristics were further discussed together with current issues and future trends. Research in this area has evolved from survival analysis through statistical modelling using mainly clinical and anatomopathological data to the prediction of cancer prognosis through a multi-faceted data-driven approach by the integration of complex, multimodal, and high-dimensional data containing multi-omics and medical imaging information and by applying Machine Learning and, more recently, Deep Learning techniques. This review concludes that cancer prognosis predictive multimodal models are capable of better stratifying patients, which can improve clinical management and contribute to the implementation of personalised medicine as well as provide new and valuable knowledge on cancer biology and its progression

    From Correlation to Causality: Does Network Information improve Cancer Outcome Prediction?

    Get PDF
    Motivation: Disease progression in cancer can vary substantially between patients. Yet, patients often receive the same treatment. Recently, there has been much work on predicting disease progression and patient outcome variables from gene expression in order to personalize treatment options. A widely used approach is high-throughput experiments that aim to explore predictive signature genes which would provide identification of clinical outcome of diseases. Microarray data analysis helps to reveal underlying biological mechanisms of tumor progression, metastasis, and drug-resistance in cancer studies. Despite first diagnostic kits in the market, there are open problems such as the choice of random gene signatures or noisy expression data. The experimental or computational noise in data and limited tissue samples collected from patients might furthermore reduce the predictive power and biological interpretability of such signature genes. Nevertheless, signature genes predicted by different studies generally represent poor similarity; even for the same type of cancer. Integration of network information with gene expression data could provide more efficient signatures for outcome prediction in cancer studies. One approach to deal with these problems employs gene-gene relationships and ranks genes using the random surfer model of Google's PageRank algorithm. Unfortunately, the majority of published network-based approaches solely tested their methods on a small amount of datasets, questioning the general applicability of network-based methods for outcome prediction. Methods: In this thesis, I provide a comprehensive and systematically evaluation of a network-based outcome prediction approach -- NetRank - a PageRank derivative -- applied on several types of gene expression cancer data and four different types of networks. The algorithm identifies a signature gene set for a specific cancer type by incorporating gene network information with given expression data. To assess the performance of NetRank, I created a benchmark dataset collection comprising 25 cancer outcome prediction datasets from literature and one in-house dataset. Results: NetRank performs significantly better than classical methods such as foldchange or t-test as it improves the prediction performance in average for 7%. Besides, we are approaching the accuracy level of the authors' signatures by applying a relatively unbiased but fully automated process for biomarker discovery. Despite an order of magnitude difference in network size, a regulatory, a protein-protein interaction and two predicted networks perform equally well. Signatures as published by the authors and the signatures generated with classical methods do not overlap -- not even for the same cancer type -- whereas the network-based signatures strongly overlap. I analyze and discuss these overlapping genes in terms of the Hallmarks of cancer and in particular single out six transcription factors and seven proteins and discuss their specific role in cancer progression. Furthermore several tests are conducted for the identification of a Universal Cancer Signature. No Universal Cancer Signature could be identified so far, but a cancer-specific combination of general master regulators with specific cancer genes could be discovered that achieves the best results for all cancer types. As NetRank offers a great value for cancer outcome prediction, first steps for a secure usage of NetRank in a public cloud are described. Conclusion: Experimental evaluation of network-based methods on a gene expression benchmark dataset suggests that these methods are especially suited for outcome prediction as they overcome the problems of random gene signatures and noisy expression data. Through the combination of network information with gene expression data, network-based methods identify highly similar signatures over all cancer types, in contrast to classical methods that fail to identify highly common gene sets across the same cancer types. In general allows the integration of additional information in gene expression analysis the identification of more reliable, accurate and reproducible biomarkers and provides a deeper understanding of processes occurring in cancer development and progression.:1 Definition of Open Problems 2 Introduction 2.1 Problems in cancer outcome prediction 2.2 Network-based cancer outcome prediction 2.3 Universal Cancer Signature 3 Methods 3.1 NetRank algorithm 3.2 Preprocessing and filtering of the microarray data 3.3 Accuracy 3.4 Signature similarity 3.5 Classical approaches 3.6 Random signatures 3.7 Networks 3.8 Direct neighbor method 3.9 Dataset extraction 4 Performance of NetRank 4.1 Benchmark dataset for evaluation 4.2 The influence of NetRank parameters 4.3 Evaluation of NetRank 4.4 General findings 4.5 Computational complexity of NetRank 4.6 Discussion 5 Universal Cancer Signature 5.1 Signature overlap – a sign for Universal Cancer Signature 5.2 NetRank genes are highly connected and confirmed in literature 5.3 Hallmarks of Cancer 5.4 Testing possible Universal Cancer Signatures 5.5 Conclusion 6 Cloud-based Biomarker Discovery 6.1 Introduction to secure Cloud computing 6.2 Cancer outcome prediction 6.3 Security analysis 6.4 Conclusion 7 Contributions and Conclusion

    Computational models and approaches for lung cancer diagnosis

    Full text link
    The success of treatment of patients with cancer depends on establishing an accurate diagnosis. To this end, the aim of this study is to developed novel lung cancer diagnostic models. New algorithms are proposed to analyse the biological data and extract knowledge that assists in achieving accurate diagnosis results
    • …
    corecore