613 research outputs found

    Integration of asynchronous and self-checking multiple-valued current-mode circuits based on dual-rail differential logic

    Get PDF
    科研費報告書収録論文(課題番号:12480064・基盤研究(B)(2) ・H12~H14/研究代表者:亀山, 充隆/配線ボトルネックフリー2線式多値ディジタルコンピューティングVLSIシステム

    Challenge of a multiple-valued technology in recent deep-submicron VLSI

    Get PDF
    科研費報告書収録論文(課題番号:13558026・基盤研究(B)(2)・13~16/研究代表者:羽生, 貴弘/転送ボトルネックフリー多値ロジックインメモリVLSIの開発と応用

    Technology Mapping, Design for Testability, and Circuit Optimizations for NULL Convention Logic Based Architectures

    Get PDF
    Delay-insensitive asynchronous circuits have been the target of a renewed research effort because of the advantages they offer over traditional synchronous circuits. Minimal timing analysis, inherent robustness against power-supply, temperature, and process variations, reduced energy consumption, less noise and EMI emission, and easy design reuse are some of the benefits of these circuits. NULL Convention Logic (NCL) is one of the mainstream asynchronous logic design paradigms that has been shown to be a promising method for designing delay-insensitive asynchronous circuits. This dissertation investigates new areas in NCL design and test and is made of three sections. The first section discusses different CMOS implementations of NCL gates and proposes new circuit techniques to enhance their operation. The second section focuses on mapping multi-rail logic expressions to a standard NCL gate library, which is a form of technology mapping for a category of NCL design automation flows. Finally, the last section proposes design for testability techniques for a recently developed low-power variant of NCL called Sleep Convention Logic (SCL)

    Asynchrobatic logic for low-power VLSI design

    Get PDF
    In this work, Asynchrobatic Logic is presented. It is a novel low-power design style that combines the energy saving benefits of asynchronous logic and adiabatic logic to produce systems whose power dissipation is reduced in several different ways. The term “Asynchrobatic” is a new word that can be used to describe these types of systems, and is derived from the concatenation and shortening of Asynchronous, Adiabatic Logic. This thesis introduces the concept and theory behind Asynchrobatic Logic. It first provides an introductory background to both underlying parent technologies (asynchronous logic and adiabatic logic). The background material continues with an explanation of a number of possible methods for designing complex data-path cells used in the adiabatic data-path. Asynchrobatic Logic is then introduced as a comparison between asynchronous and Asynchrobatic buffer chains, showing that for wide systems, it operates more efficiently. Two more-complex sub-systems are presented, firstly a layout implementation of the substitution boxes from the Twofish encryption algorithm, and secondly a front-end only (without parasitic capacitances, resistances) simulation that demonstrates a functional system capable of calculating the Greatest Common Denominator (GCD) of a pair of 16-bit unsigned integers, which under typical conditions on a 0.35μm process, executed a test vector requiring twenty-four iterations in 2.067μs with a power consumption of 3.257nW. These examples show that the concept of Asynchrobatic Logic has the potential to be used in real-world applications, and is not just theory without application. At the time of its first publication in 2004, Asynchrobatic Logic was both unique and ground-breaking, as this was the first time that consideration had been given to operating large-scale adiabatic logic in an asynchronous fashion, and the first time that Asynchronous Stepwise Charging (ASWC) had been used to drive an adiabatic data-path

    Analog and Mixed Signal Design towards a Miniaturized Sleep Apnea Monitoring Device

    Get PDF
    Sleep apnea is a sleep-induced breathing disorder with symptoms of momentary and often repetitive cessations in breathing rhythm or sustained reductions in breathing amplitude. The phenomenon is known to occur with varying degrees of severity in literally millions of people around the world and cause a range of chronicle health issues. In spite of its high prevalence and serious consequences, nearly 80% of people with sleep apnea condition remain undiagnosed. The current standard diagnosis technique, termed polysomnography or PSG, requires the patient to schedule and undergo a complex full-night sleep study in a specially-equipped sleep lab. Due to both high cost and substantial inconvenience, millions of apnea patients are still undiagnosed and thus untreated. This research work aims at a simple, reliable, and miniaturized solution for in-home sleep apnea diagnosis purposes. The proposed solution bears high-level integration and minimal interference with sleeping patients, allowing them to monitor their apnea conditions at the comfort of their homes. Based on a MEMS sensor and an effective apnea detection algorithm, a low-cost single-channel apnea screening solution is proposed. A custom designed IC chip implements the apnea detection algorithm using time-domain signal processing techniques. The chip performs autonomous apnea detection and scoring based on the patient’s airflow signals detected by the MEMS sensor. Variable sensitivity is enabled to accommodate different breathing signal amplitudes. The IC chip was fabricated in standard 0.5-μm CMOS technology. A prototype device was designed and assembled including a MEMS sensor, the apnea detection IC chip, a PSoC platform, and wireless transceiver for data transmission. The prototype device demonstrates a valuable screening solution with great potential to reach the broader public with undiagnosed apnea conditions. In a battery-operated miniaturized medical device, an energy-efficient analog-to-digital converter is an integral part linking the analog world of biomedical signals and the digital domain with powerful signal processing capabilities. This dissertation includes the detailed design of a successive approximation register (SAR) ADC for ultra-low power applications. The ADC adopts an asynchronous 2b/step scheme that halves both conversion time and DAC/digital circuit’s switching activities to reduce static and dynamic energy consumption. A low-power sleep mode is engaged at the end of all conversion steps during each clock period. The technical contributions of this ADC design include an innovative 2b/step reference scheme based on a hybrid R-2R/C-3C DAC, an interpolation-assisted time-domain 2b comparison scheme, and a TDC with dual-edge-comparison mechanism. The prototype ADC was fabricated in 0.18μm CMOS process with an active area of 0.103 mm^(2), and achieves an ENoB of 9.2 bits and an FoM of 6.7 fJ/conversion-step at 100-kS/s

    An integrated soft- and hard-programmable multithreaded architecture

    Get PDF

    NASA Space Engineering Research Center Symposium on VLSI Design

    Get PDF
    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design
    corecore