54,367 research outputs found

    A design view of capability

    Get PDF
    In order to optimise resource deployment in a rapid changing operational environment, capability has received increasing concerns in terms of maximising the utilisation of resources. As a result of such extant research, different domains were seen to endow different meanings to capability, indicating a lack of common understanding of the true nature of capability. This paper presents a design view of capability from design artefact knowledge perspective. Capability is defined as an intrinsic quality of an entity closely related to artefact behavioural and structural knowledge. Design artefact knowledge was categorised across expected, instantiated, and interpreted artefact knowledge spaces (ES, IsS, and ItS). Accordingly, it suggests that three types of capability exist in the three spaces, which can be used in employing resources. Moreover, Network Enabled Capability (NEC), the capability of a set of linked resources within a specific environment is discussed, with an example of how network resources are deployed in a Virtual Integration Platform (VIP)

    Eco‐Holonic 4.0 Circular Business Model to  Conceptualize Sustainable Value Chain Towards  Digital Transition 

    Get PDF
    The purpose of this paper is to conceptualize a circular business model based on an Eco-Holonic Architecture, through the integration of circular economy and holonic principles. A conceptual model is developed to manage the complexity of integrating circular economy principles, digital transformation, and tools and frameworks for sustainability into business models. The proposed architecture is multilevel and multiscale in order to achieve the instantiation of the sustainable value chain in any territory. The architecture promotes the incorporation of circular economy and holonic principles into new circular business models. This integrated perspective of business model can support the design and upgrade of the manufacturing companies in their respective industrial sectors. The conceptual model proposed is based on activity theory that considers the interactions between technical and social systems and allows the mitigation of the metabolic rift that exists between natural and social metabolism. This study contributes to the existing literature on circular economy, circular business models and activity theory by considering holonic paradigm concerns, which have not been explored yet. This research also offers a unique holonic architecture of circular business model by considering different levels, relationships, dynamism and contextualization (territory) aspects

    Renewing the link between cognitive archeology and cognitive science

    Get PDF
    In cognitive archeology, theories of cognition are used to guide interpretation of archeological evidence. This process provides useful feedback on the theories themselves. The attempt to accommodate archeological data helps shape ideas about how human cognition has evolved and thus—by extension—how the modern form functions. But the implications that archeology has for cognitive science particularly relate to traditional proposals from the field involving modular decomposition, symbolic thought and the mediating role of language. There is a need to make a connection with more recent approaches, which more strongly emphasize information, probabilistic reasoning and exploitation of embodiment. Proposals from cognitive archeology, in which evolution of cognition is seen to involve a transition to symbolic thought need to be realigned with theories from cognitive science that no longer give symbolic reasoning a central role. The present paper develops an informational approach, in which the transition is understood to involve cumulative development of information-rich generalizations

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    Considering Human Aspects on Strategies for Designing and Managing Distributed Human Computation

    Full text link
    A human computation system can be viewed as a distributed system in which the processors are humans, called workers. Such systems harness the cognitive power of a group of workers connected to the Internet to execute relatively simple tasks, whose solutions, once grouped, solve a problem that systems equipped with only machines could not solve satisfactorily. Examples of such systems are Amazon Mechanical Turk and the Zooniverse platform. A human computation application comprises a group of tasks, each of them can be performed by one worker. Tasks might have dependencies among each other. In this study, we propose a theoretical framework to analyze such type of application from a distributed systems point of view. Our framework is established on three dimensions that represent different perspectives in which human computation applications can be approached: quality-of-service requirements, design and management strategies, and human aspects. By using this framework, we review human computation in the perspective of programmers seeking to improve the design of human computation applications and managers seeking to increase the effectiveness of human computation infrastructures in running such applications. In doing so, besides integrating and organizing what has been done in this direction, we also put into perspective the fact that the human aspects of the workers in such systems introduce new challenges in terms of, for example, task assignment, dependency management, and fault prevention and tolerance. We discuss how they are related to distributed systems and other areas of knowledge.Comment: 3 figures, 1 tabl

    Evaluation in a project life‐cycle: The hypermedia CAMILLE project

    Get PDF
    In the CAL literature, the issue of integrating evaluation into the life‐cycle of a project has often been recommended but less frequently reported, at least for large‐scale hypermedia environments. Indeed, CAL developers face a difficult problem because effective evaluation needs to satisfy the potentially conflicting demands of a variety of audiences (teachers, administrators, the research community, sponsors, etc.). This paper first examines some of the various forms of evaluation adopted by different kinds of audiences. It then reports on evaluations, formative as well as summative, set up by the European CAMILLE project teams in four countries during a large‐scale courseware development project. It stresses the advantages, despite drawbacks and pitfalls, for CAL developers to systematically undertake evaluation. Lastly, it points out some general outcomes concerning learning issues of interest to teachers, trainers and educational advisers. These include topics such as the impact of multimedia, of learner variability and learner autonomy on the effectiveness of learning with respect to language skills
    corecore