1,798 research outputs found

    Knowledge-based best of breed approach for automated detection of clinical events based on German free text digital hospital discharge letters

    Get PDF
    OBJECTIVES: The secondary use of medical data contained in electronic medical records, such as hospital discharge letters, is a valuable resource for the improvement of clinical care (e.g. in terms of medication safety) or for research purposes. However, the automated processing and analysis of medical free text still poses a huge challenge to available natural language processing (NLP) systems. The aim of this study was to implement a knowledge-based best of breed approach, combining a terminology server with integrated ontology, a NLP pipeline and a rules engine. METHODS: We tested the performance of this approach in a use case. The clinical event of interest was the particular drug-disease interaction "proton-pump inhibitor [PPI] use and osteoporosis". Cases were to be identified based on free text digital discharge letters as source of information. Automated detection was validated against a gold standard. RESULTS: Precision of recognition of osteoporosis was 94.19%, and recall was 97.45%. PPIs were detected with 100% precision and 97.97% recall. The F-score for the detection of the given drug-disease-interaction was 96,13%. CONCLUSION: We could show that our approach of combining a NLP pipeline, a terminology server, and a rules engine for the purpose of automated detection of clinical events such as drug-disease interactions from free text digital hospital discharge letters was effective. There is huge potential for the implementation in clinical and research contexts, as this approach enables analyses of very high numbers of medical free text documents within a short time period

    How will the Internet of Things enable Augmented Personalized Health?

    Full text link
    Internet-of-Things (IoT) is profoundly redefining the way we create, consume, and share information. Health aficionados and citizens are increasingly using IoT technologies to track their sleep, food intake, activity, vital body signals, and other physiological observations. This is complemented by IoT systems that continuously collect health-related data from the environment and inside the living quarters. Together, these have created an opportunity for a new generation of healthcare solutions. However, interpreting data to understand an individual's health is challenging. It is usually necessary to look at that individual's clinical record and behavioral information, as well as social and environmental information affecting that individual. Interpreting how well a patient is doing also requires looking at his adherence to respective health objectives, application of relevant clinical knowledge and the desired outcomes. We resort to the vision of Augmented Personalized Healthcare (APH) to exploit the extensive variety of relevant data and medical knowledge using Artificial Intelligence (AI) techniques to extend and enhance human health to presents various stages of augmented health management strategies: self-monitoring, self-appraisal, self-management, intervention, and disease progress tracking and prediction. kHealth technology, a specific incarnation of APH, and its application to Asthma and other diseases are used to provide illustrations and discuss alternatives for technology-assisted health management. Several prominent efforts involving IoT and patient-generated health data (PGHD) with respect converting multimodal data into actionable information (big data to smart data) are also identified. Roles of three components in an evidence-based semantic perception approach- Contextualization, Abstraction, and Personalization are discussed

    A Systematic Review of Natural Language Processing for Knowledge Management in Healthcare

    Full text link
    Driven by the visions of Data Science, recent years have seen a paradigm shift in Natural Language Processing (NLP). NLP has set the milestone in text processing and proved to be the preferred choice for researchers in the healthcare domain. The objective of this paper is to identify the potential of NLP, especially, how NLP is used to support the knowledge management process in the healthcare domain, making data a critical and trusted component in improving the health outcomes. This paper provides a comprehensive survey of the state-of-the-art NLP research with a particular focus on how knowledge is created, captured, shared, and applied in the healthcare domain. Our findings suggest, first, the techniques of NLP those supporting knowledge management extraction and knowledge capture processes in healthcare. Second, we propose a conceptual model for the knowledge extraction process through NLP. Finally, we discuss a set of issues, challenges, and proposed future research areas

    Clinical Practice Implementation to Address ASCVD Risk: A Practice Change in Primary Care

    Get PDF
    Practice Problem: Heart disease stands as the leading cause of mortality in the United States. While healthcare providers strive to identify and optimize prevention strategies, particularly in high-risk patient populations, notable gaps in care persist, notably in the management of modifiable risk factors such as low-density lipoprotein cholesterol (LDL). By harnessing the power of artificial intelligence (AI) integrated software within clinical settings, we can revolutionize the landscape of this devastating chronic disease. PICOT: The PICOT question that guided this project was: In Primary Care Advanced Practice Providers (APP) caring for high-risk and/or very high-risk patients with atherosclerotic cardiovascular disease (ASCVD) (P), how do automated electronic alerts with guideline-based recommendations (I) compare to standard notification practice (C) affect referral initiation to cardiology or prompt medication change (O) within 10 weeks (T)? Evidence: In the realm of modern healthcare, it is crucial to recognize the impact of AI on Electronic Health Records (EHRs). This fusion of data analysis and health information technology provides an opportunity for healthcare treatments to become much more effective, resulting in better patient outcomes. Fifteen studies that matched the inclusion criteria were collected and used as substantiating evidence for this project. Intervention: AI software integrated into the EHR system computed comprehensive data analytics, consequently discovering a substantial cohort of patients with an elevated risk profile for ASCVD, accompanied by an LDL-C level that exceeded established clinical guidelines. Subsequently, an automated communication was sent to the APP, furnishing them with pertinent notifications and offering referral recommendations. Outcome: By integrating AI processes into the EHR, data management is streamlined and real-time disease prevention analysis is achieved. The primary goal was to identify high-risk ASCVD patient groups using AI within the EHR and assess the effectiveness of AI-generated electronic alerts with clinical guidance in encouraging behavior change. The clinical significance of this data collection and implementation was substantial. While the statistical analysis produced relevant metrics, it also exhibited applicability in the clinical context. The data exposed a patient population lacking aggressive medical management or referrals, a concern noted by APPs. Conclusion: Introducing AI-based tools can direct the pathway of care and bridge crucial gaps in care in high-risk populations. The result of this technology utilization and integration offers timely screening strategies, education, clinical decision support, and opportunities to address vital pathways for providers and health systems to address ASCVD treatment gaps

    A Systematic Review of Natural Language Processing for Knowledge Management in Healthcare

    Get PDF
    Driven by the visions of Data Science, recent years have seen a paradigm shift in Natural Language Processing (NLP). NLP has set the milestone in text processing and proved to be the preferred choice for researchers in the healthcare domain. The objective of this paper is to identify the potential of NLP, especially, how NLP is used to support the knowledge management process in the healthcare domain, making data a critical and trusted component in improving health outcomes. This paper provides a comprehensive survey of the state-of-the-art NLP research with a particular focus on how knowledge is created, captured, shared, and applied in the healthcare domain. Our findings suggest, first, the techniques of NLP those supporting knowledge management extraction and knowledge capture processes in healthcare. Second, we propose a conceptual model for the knowledge extraction process through NLP. Finally, we discuss a set of issues, challenges, and proposed future research areas

    Annotating patient clinical records with syntactic chunks and named entities: the Harvey corpus

    Get PDF
    The free text notes typed by physicians during patient consultations contain valuable information for the study of disease and treatment. These notes are difficult to process by existing natural language analysis tools since they are highly telegraphic (omitting many words), and contain many spelling mistakes, inconsistencies in punctuation, and non-standard word order. To support information extraction and classification tasks over such text, we describe a de-identified corpus of free text notes, a shallow syntactic and named entity annotation scheme for this kind of text, and an approach to training domain specialists with no linguistic background to annotate the text. Finally, we present a statistical chunking system for such clinical text with a stable learning rate and good accuracy, indicating that the manual annotation is consistent and that the annotation scheme is tractable for machine learning

    Novel Natural Language Processing Models for Medical Terms and Symptoms Detection in Twitter

    Get PDF
    This dissertation focuses on disambiguation of language use on Twitter about drug use, consumption types of drugs, drug legalization, ontology-enhanced approaches, and prediction analysis of data-driven by developing novel NLP models. Three technical aims comprise this work: (a) leveraging pattern recognition techniques to improve the quality and quantity of crawled Twitter posts related to drug abuse; (b) using an expert-curated, domain-specific DsOn ontology model that improve knowledge extraction in the form of drug-to-symptom and drug-to-side effect relations; and (c) modeling the prediction of public perception of the drug’s legalization and the sentiment analysis of drug consumption on Twitter. We collected 7.5 million data from August 2015 to March 2016. This work leveraged a longstanding, multidisciplinary collaboration between researchers at the Population & Center for Interventions, Treatment, and Addictions Research (CITAR) in the Boonshoft School of Medicine and the Department of Computer Science and Engineering. In addition, we aimed to develop and deploy an innovative prediction analysis algorithm for eDrugTrends, capable of semi-automated processing of Twitter data to identify emerging trends in cannabis and synthetic cannabinoid use in the U.S. In addition, the study included aim four, a use case study defined by tweets content analyzing PLWH, medication patterns, and identifying keyword trends via Twitter-based, user-generated content. This case study leveraged a multidisciplinary collaboration between researchers at the Departments of Family Medicine and Population and Public Health Sciences at Wright State University’s Boonshoft School of Medicine and the Department of Computer Science and Engineering. We collected 65K data from February 2022 to July 2022 with the U.S.-based HIV knowledge domain recruited via the Twitter API streaming platform. For knowledge discovery, domain knowledge plays a significant role in powering many intelligent frameworks, such as data analysis, information retrieval, and pattern recognition. Recent NLP and semantic web advances have contributed to extending the domain knowledge of medical terms. These techniques required a bag of seeds for medical knowledge discovery. Various initiate seeds create irrelevant data to the noise and negatively impact the prediction analysis performance. The methodology of aim one, PatRDis classifier, applied for noisy and ambiguous issues, and aim two, DsOn Ontology model, applied for semantic parsing and enriching the online medical to classify the data for HIV care medications engagement and symptom detection from Twitter. By applying the methodology of aims 2 and 3, we solved the challenges of ambiguity and explored more than 1500 cannabis and cannabinoid slang terms. Sentiments measured preceding the election, such as states with high levels of positive sentiment preceding the election who were engaged in enhancing their legalization status. we also used the same dataset for prediction analysis for marijuana legalization and consumption trend analysis (Ohio public polling data). In Aim 4, we applied three experiments, ensemble-learning, the RNN-LSM, the NNBERT-CNN models, and five techniques to determine the tweets associated with medication adherence and HIV symptoms. The long short-term memory (LSTM) model and the CNN for sentence classification produce accurate results and have been recently used in NLP tasks. CNN models use convolutional layers and maximum pooling or max-overtime pooling layers to extract higher-level features, while LSTM models can capture long-term dependencies between word sequences hence are better used for text classification. We propose attention-based RNN, MLP, and CNN deep learning models that capitalize on the advantages of LSTM and BERT techniques with an additional attention mechanism. We trained the model using NNBERT to evaluate the proposed model\u27s performance. The test results showed that the proposed models produce more accurate classification results, and BERT obtained higher recall and F1 scores than MLP or LSTM models. In addition, We developed an intelligent tool capable of automated processing of Twitter data to identify emerging trends in HIV disease, HIV symptoms, and medication adherence
    • …
    corecore