486 research outputs found

    Contributions to QoS and energy efficiency in wi-fi networks

    Get PDF
    The Wi-Fi technology has been in the recent years fostering the proliferation of attractive mobile computing devices with broadband capabilities. Current Wi-Fi radios though severely impact the battery duration of these devices thus limiting their potential applications. In this thesis we present a set of contributions that address the challenge of increasing energy efficiency in Wi-Fi networks. In particular, we consider the problem of how to optimize the trade-off between performance and energy effciency in a wide variety of use cases and applications. In this context, we introduce novel energy effcient algorithms for real-time and data applications, for distributed and centralized Wi-Fi QoS and power saving protocols and for Wi-Fi stations and Access Points. In addition, the diÂżerent algorithms presented in this thesis adhere to the following design guidelines: i) they are implemented entirely at layer two, and can hence be easily re-used in any device with a Wi-Fi interface, ii) they do not require modiÂżcations to current 802.11 standards, and can hence be readily deployed in existing Wi-Fi devices, and iii) whenever possible they favor client side solutions, and hence mobile computing devices implementing them can benefit from an increased energy efficiency regardless of the Access Point they connect to. Each of our proposed algorithms is thoroughly evaluated by means of both theoretical analysis and packet level simulations. Thus, the contributions presented in this thesis provide a realistic set of tools to improve energy efficiency in current Wi-Fi networks

    Low Power system Design techniques for mobile computers

    Get PDF
    Portable products are being used increasingly. Because these systems are battery powered, reducing power consumption is vital. In this report we give the properties of low power design and techniques to exploit them on the architecture of the system. We focus on: min imizing capacitance, avoiding unnecessary and wasteful activity, and reducing voltage and frequency. We review energy reduction techniques in the architecture and design of a hand-held computer and the wireless communication system, including error control, sys tem decomposition, communication and MAC protocols, and low power short range net works

    Improving the reliability of optimised link state routing in a smart grid neighbour area network based wireless mesh network using multiple metrics

    Get PDF
    © 2017 by the authors; licensee MDPI. Reliable communication is the backbone of advanced metering infrastructure (AMI). Within the AMI, the neighbourhood area network (NAN) transports a multitude of traffic, each with unique requirements. In order to deliver an acceptable level of reliability and latency, the underlying network, such as the wireless mesh network (WMN), must provide or guarantee the quality-of-service (QoS) level required by the respective application traffic. Existing WMN routing protocols, such as optimised link state routing (OLSR), typically utilise a single metric and do not consider the requirements of individual traffic; hence, packets are delivered on a best-effort basis. This paper presents a QoS-aware WMN routing technique that employs multiple metrics in OLSR optimal path selection for AMI applications. The problems arising from this approach are non deterministic polynomial time (NP)-complete in nature, which were solved through the combined use of the analytical hierarchy process (AHP) algorithm and pruning techniques. For smart meters transmitting Internet Protocol (IP) packets of varying sizes at different intervals, the proposed technique considers the constraints of NAN and the applications' traffic characteristics. The technique was developed by combining multiple OLSR path selection metrics with the AHP algorithm in ns-2. Compared with the conventional link metric in OLSR, the results show improvements of about 23% and 45% in latency and Packet Delivery Ratio (PDR), respectively, in a 25-node grid NAN

    Efficient access of mobile flows to heterogeneous networks under flash crowds

    Get PDF
    Future wireless networks need to offer orders of magnitude more capacity to address the predicted growth in mobile traffic demand. Operators to enhance the capacity of cellular networks are increasingly using WiFi to offload traffic from their core networks. This paper deals with the efficient and flexible management of a heterogeneous networking environment offering wireless access to multimode terminals. This wireless access is evaluated under disruptive usage scenarios, such as flash crowds, which can mean unwanted severe congestion on a specific operator network whilst the remaining available capacity from other access technologies is not being used. To address these issues, we propose a scalable network assisted distributed solution that is administered by centralized policies, and an embedded reputation system, by which initially selfish operators are encouraged to cooperate under the threat of churn. Our solution after detecting a congested technology, including within its wired backhaul, automatically offloads and balances the flows amongst the access resources from all the existing technologies, following some quality metrics. Our results show that the smart integration of access networks can yield an additional wireless quality for mobile flows up to thirty eight percent beyond that feasible from the best effort standalone operation of each wireless access technology. It is also evidenced that backhaul constraints are conveniently reflected on the way the flow access to wireless media is granted. Finally, we have analyzed the sensitivity of the handover decision algorithm running in each terminal agent to consecutive flash crowds, as well as its centralized feature that controls the connection quality offered by a heterogeneous access infrastructure owned by distinct operators

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin

    Multipath routing and QoS provisioning in mobile ad hoc networks

    Get PDF
    PhDA Mobile Ad Hoc Networks (MANET) is a collection of mobile nodes that can communicate with each other using multihop wireless links without utilizing any fixed based-station infrastructure and centralized management. Each mobile node in the network acts as both a host generating flows or being destination of flows and a router forwarding flows directed to other nodes. Future applications of MANETs are expected to be based on all-IP architecture and be capable of carrying multitude real-time multimedia applications such as voice and video as well as data. It is very necessary for MANETs to have an efficient routing and quality of service (QoS) mechanism to support diverse applications. This thesis proposes an on-demand Node-Disjoint Multipath Routing protocol (NDMR) with low broadcast redundancy. Multipath routing allows the establishment of multiple paths between a single source and single destination node. It is also beneficial to avoid traffic congestion and frequent link breaks in communication because of the mobility of nodes. The important components of the protocol, such as path accumulation, decreasing routing overhead and selecting node-disjoint paths, are explained. Because the new protocol significantly reduces the total number of Route Request packets, this results in an increased delivery ratio, smaller end-to-end delays for data packets, lower control overhead and fewer collisions of packets. Although NDMR provides node-disjoint multipath routing with low route overhead in MANETs, it is only a best-effort routing approach, which is not enough to support QoS. DiffServ is a standard approach for a more scalable way to achieve QoS in any IP network and could potentially be used to provide QoS in MANETs because it minimises the need for signalling. However, one of the biggest drawbacks of DiffServ is that the QoS provisioning is separate from the routing process. This thesis presents a Multipath QoS Routing protocol for iv supporting DiffServ (MQRD), which combines the advantages of NDMR and DiffServ. The protocol can classify network traffic into different priority levels and apply priority scheduling and queuing management mechanisms to obtain QoS guarantees

    Efficient sharing mechanisms for virtualized multi-tenant heterogeneous networks

    Get PDF
    The explosion in data traffic, the physical resource constraints, and the insufficient financial incentives for deploying 5G networks, stress the need for a paradigm shift in network upgrades. Typically, operators are also the service providers, which charge the end users with low and flat tariffs, independently of the service enjoyed. A fine-scale management of the network resources is needed, both for optimizing costs and resource utilization, as well as for enabling new synergies among network owners and third-parties. In particular, operators could open their networks to third parties by means of fine-scale sharing agreements over customized networks for enhanced service provision, in exchange for an adequate return of investment for upgrading their infrastructures. The main objective of this thesis is to study the potential of fine-scale resource management and sharing mechanisms for enhancing service provision and for contributing to a sustainable road to 5G. More precisely, the state-of-the-art architectures and technologies for network programmability and scalability are studied, together with a novel paradigm for supporting service diversity and fine-scale sharing. We review the limits of conventional networks, we extend existing standardization efforts and define an enhanced architecture for enabling 5G networks' features (e.g., network-wide centralization and programmability). The potential of the proposed architecture is assessed in terms of flexible sharing and enhanced service provision, while the advantages of alternative business models are studied in terms of additional profits to the operators. We first study the data rate improvement achievable by means of spectrum and infrastructure sharing among operators and evaluate the profit increase justified by a better service provided. We present a scheme based on coalitional game theory for assessing the capability of accommodating more service requests when a cooperative approach is adopted, and for studying the conditions for beneficial sharing among coalitions of operators. Results show that: i) collaboration can be beneficial also in case of unbalanced cost redistribution within coalitions; ii) coalitions of equal-sized operators provide better profit opportunities and require lower tariffs. The second kind of sharing interaction that we consider is the one between operators and third-party service providers, in the form of fine-scale provision of customized portions of the network resources. We define a policy-based admission control mechanism, whose performance is compared with reference strategies. The proposed mechanism is based on auction theory and computes the optimal admission policy at a reduced complexity for different traffic loads and allocation frequencies. Because next-generation services include delay-critical services, we compare the admission control performances of conventional approaches with the proposed one, which proves to offer near real-time service provision and reduced complexity. Besides, it guarantees high revenues and low expenditures in exchange for negligible losses in terms of fairness towards service providers. To conclude, we study the case where adaptable timescales are adopted for the policy-based admission control, in order to promptly guarantee service requirements over traffic fluctuations. In order to reduce complexity, we consider the offline pre­computation of admission strategies with respect to reference network conditions, then we study the extension to unexplored conditions by means of computationally efficient methodologies. Performance is compared for different admission strategies by means of a proof of concept on real network traces. Results show that the proposed strategy provides a tradeoff in complexity and performance with respect to reference strategies, while reducing resource utilization and requirements on network awareness.La explosion del trafico de datos, los recursos limitados y la falta de incentivos para el desarrollo de 5G evidencian la necesidad de un cambio de paradigma en la gestion de las redes actuales. Los operadores de red suelen ser tambien proveedores de servicios, cobrando tarifas bajas y planas, independientemente del servicio ofrecido. Se necesita una gestion de recursos precisa para optimizar su utilizacion, y para permitir nuevas sinergias entre operadores y proveedores de servicios. Concretamente, los operadores podrian abrir sus redes a terceros compartiendolas de forma flexible y personalizada para mejorar la calidad de servicio a cambio de aumentar sus ganancias como incentivo para mejorar sus infraestructuras. El objetivo principal de esta tesis es estudiar el potencial de los mecanismos de gestion y comparticion de recursos a pequei\a escala para trazar un camino sostenible hacia el 5G. En concreto, se estudian las arquitecturas y tecnolog fas mas avanzadas de "programabilidad" y escalabilidad de las redes, junto a un nuevo paradigma para la diversificacion de servicios y la comparticion de recursos. Revisamos los limites de las redes convencionales, ampliamos los esfuerzos de estandarizacion existentes y definimos una arquitectura para habilitar la centralizacion y la programabilidad en toda la red. La arquitectura propuesta se evalua en terminos de flexibilidad en la comparticion de recursos, y de mejora en la prestacion de servicios, mientras que las ventajas de un modelo de negocio alternativo se estudian en terminos de ganancia para los operadores. En primer lugar, estudiamos el aumento en la tasa de datos gracias a un uso compartido del espectro y de las infraestructuras, y evaluamos la mejora en las ganancias de los operadores. Presentamos un esquema de admision basado en la teoria de juegos para acomodar mas solicitudes de servicio cuando se adopta un enfoque cooperativo, y para estudiar las condiciones para que la reparticion de recursos sea conveniente entre coaliciones de operadores. Los resultados ensei\an que: i) la colaboracion puede ser favorable tambien en caso de una redistribucion desigual de los costes en cada coalicion; ii) las coaliciones de operadores de igual tamai\o ofrecen mejores ganancias y requieren tarifas mas bajas. El segundo tipo de comparticion que consideramos se da entre operadores de red y proveedores de servicios, en forma de provision de recursos personalizada ya pequei\a escala. Definimos un mecanismo de control de trafico basado en polfticas de admision, cuyo rendimiento se compara con estrategias de referencia. El mecanismo propuesto se basa en la teoria de subastas y calcula la politica de admision optima con una complejidad reducida para diferentes cargas de trafico y tasa de asignacion. Con particular atencion a servicios 5G de baja latencia, comparamos las prestaciones de estrategias convencionales para el control de admision con las del metodo propuesto, que proporciona: i) un suministro de servicios casi en tiempo real; ii) una complejidad reducida; iii) unos ingresos elevados; y iv) unos gastos reducidos, a cambio de unas perdidas insignificantes en terminos de imparcialidad hacia los proveedores de servicios. Para concluir, estudiamos el caso en el que se adoptan escalas de tiempo adaptables para el control de admision, con el fin de garantizar puntualmente los requisitos de servicio bajo diferentes condiciones de trafico. Para reducir la complejidad, consideramos el calculo previo de las estrategias de admision con respecto a condiciones de red de referenda, adaptables a condiciones inexploradas por medio de metodologias computacionalmente eficientes. Se compara el rendimiento de diferentes estrategias de admision sobre trazas de trafico real. Los resultados muestran que la estrategia propuesta equilibra complejidad y ganancias, mientras se reduce la utilizacion de recursos y la necesidad de conocer el estado exacto de la red.Postprint (published version

    Quality of service on ad-hoc wireless networks

    Get PDF
    Over the last years, Mobile Ad-hoc Networks (MANETs) have captured the attention of the research community. The flexibility and cost savings they provide, due to the fact that no infrastructure is needed to deploy a MANET, is one of the most attractive possibilities of this technology. However, along with the flexibility, lots of problems arise due to the bad quality of transmission media, the scarcity of resources, etc. Since real-time communications will be common in MANETs, there has been an increasing motivation on the introduction of Quality of Service (QoS) in such networks. However, many characteristics of MANETs make QoS provisioning a difficult problem.In order to avoid congestion, a reservation mechanism that works together with a Connection Admission Control (CAC) seems to be a reasonable solution. However, most of the QoS approaches found in literature for MANETs do not use reservations. One reason for that, is the difficulty on determining the available bandwidth at a node. This is needed to decide whether there are enough resources to accommodate a new connection.This thesis proposes a simple, yet effective, method for nodes in a CSMA-based MANET to compute their available bandwidth in a distributed way. Based on this value, a QoS reservation mechanism called BRAWN (Bandwidth Reservation over Ad-hoc Networks) is introduced for multirate MANETs, allowing bandwidth allocation on a per flow basis. By multirate we refer to those networks where wireless nodes are able to dynamically switch among several link rates. This allows nodes to select the highest possible transmission rate for exchanging data, independently for each neighbor.The BRAWN mechanism not only guarantees certain QoS levels, but also naturally distributes the traffic more evenly among network nodes (i.e. load balancing). It works completely on the network layer, so that no modifications on lower layers are required, although some information about the network congestion state could also be taken into account if provided by the MAC (Medium Access Control) layer. The thesis analyzes the applicability of the proposed reservation mechanism over both proactive and reactive routing protocols, and extensions to such protocols are proposed whenever needed in order to improve their performance on multirate networks. On mobile scenarios, BRAWN also achieves high QoS provisioning levels by letting the nodes to periodically refresh QoS reservations. This extension of the protocol for mobile nodes is referred as BRAWN-R (BRAWN with Refreshments).Summarizing, the outstanding features of the reservation mechanism proposed by this thesis are: (i) Multirate, i.e. it allows wireless nodes to choose among different transmission rates, in order to accommodate to different channel conditions. (ii) Targeted to CSMA-based wireless MAC protocols, e.g. 802.11. (iii) Reservation based, allowing the network nodes to pro-actively protect ongoing QoS flows, and applying an effective CAC. (iv) Adaptive to topology changes introduced by the mobility of the nodes, re-routing QoS flows to more efficient paths. (v) Feasible and simple to implement over existing MANET routing protocols (as it is shown by the prototype presented at the end of the study).Postprint (published version
    • 

    corecore