63 research outputs found

    On Spectral Coexistence of CP-OFDM and FB-MC Waveforms in 5G Networks

    Full text link
    Future 5G networks will serve a variety of applications that will coexist on the same spectral band and geographical area, in an uncoordinated and asynchronous manner. It is widely accepted that using CP-OFDM, the waveform used by most current communication systems, will make it difficult to achieve this paradigm. Especially, CP-OFDM is not adapted for spectral coexistence because of its poor spectral localization. Therefore, it has been widely suggested to use filter bank based multi carrier (FB-MC) waveforms with enhanced spectral localization to replace CP-OFDM. Especially, FB-MC waveforms are expected to facilitate coexistence with legacy CP-OFDM based systems. However, this idea is based on the observation of the PSD of FB-MC waveforms only. In this paper, we demonstrate that this approach is flawed and show what metric should be used to rate interference between FB-MC and CP-OFDM systems. Finally, our results show that using FB-MC waveforms does not facilitate coexistence with CP-OFDM based systems to a high extent.Comment: Manuscript submitted for review to IEEE Transactions on Wireless Communication

    A Link Quality Model for Generalised Frequency Division Multiplexing

    Get PDF
    5G systems aim to achieve extremely high data rates, low end-to-end latency and ultra-low power consumption. Recently, there has been considerable interest in the design of 5G physical layer waveforms. One important candidate is Generalised Frequency Division Multiplexing (GFDM). In order to evaluate its performance and features, system-level studies should be undertaken in a range of scenarios. These studies, however, require highly complex computations if they are performed using bit-level simulators. In this paper, the Mutual Information (MI) based link quality model (PHY abstraction), which has been regularly used to implement system-level studies for Orthogonal Frequency Division Multiplexing (OFDM), is applied to GFDM. The performance of the GFDM waveform using this model and the bit-level simulation performance is measured using different channel types. Moreover, a system-level study for a GFDM based LTE-A system in a realistic scenario, using both a bit-level simulator and this abstraction model, has been studied and compared. The results reveal the accuracy of this model using realistic channel data. Based on these results, the PHY abstraction technique can be applied to evaluate the performance of GFDM based systems in an effective manner with low complexity. The maximum difference in the Packet Error Rate (PER) and throughput results in the abstraction case compared to bit-level simulation does not exceed 4% whilst offering a simulation time saving reduction of around 62,000 times.Comment: 5 pages, 8 figures, accepted in VTC- spring 201

    Spectral Efficiency Analysis of Filter Bank Multi‐Carrier (FBMC)‐ Based 5G Networks with Estimated Channel State Information (CSI)

    Get PDF
    Filter bank multi‐carrier (FBMC) modulation, as a potential candidate for physical data communication in the fifth generation (5G) wireless networks, has been widely investigated. This chapter focuses on the spectral efficiency analysis of FBMC‐based cognitive radio (CR) systems, and spectral efficiency comparison is conducted with another three types of multi‐carrier modulations: orthogonal frequency division multiplexing (OFDM), generalized frequency division multiplexing (GFDM), and universal‐filtered multi‐carrier (UFMC). In order to well evaluate and compare the spectral efficiency, we propose two resource allocation (RA) algorithms for single‐cell and two‐cell CR systems, respectively. In the single‐cell system, the RA algorithm is divided into two sequential steps, which incorporate subcarrier assignment and power allocation. In the two‐cell system, a noncooperative game is formulated and the multiple access channel (MAC) technique assists to solve the RA problem. The channel state information (CSI) between CR users and licensed users cannot be precisely known in practice, and thus, an estimated CSI is considered by defining a prescribed outage probability of licensed systems. Numerical results show that FBMC can achieve the highest channel capacity compared with another three waveforms

    Chapter Spectral Efficiency Analysis of Filter Bank Multi‐Carrier (FBMC)‐ Based 5G Networks with Estimated Channel State Information (CSI)

    Get PDF
    The heterogeneous cellular network (HCN) is most significant as a key technology for future fifth-generation (5G) wireless networks. The heterogeneous network consists of randomly macrocell base stations (MBSs) overlaid with femtocell base stations (FBSs). Stochastic geometry has been shown to be a very powerful tool to model, analyze, and design networks with random topologies such as wireless ad hoc, sensor networks, and multi-tier cellular networks. HCNs can be energy-efficiently designed by deploying various BSs belonging to different networks, which has drawn significant attention to one of the technologies for future 5G wireless networks. In this chapter, we propose switching off/on systems enabling the BSs in the cellular networks to efficiently consume the power by introducing active/sleep modes, which is able to reduce the interference and power consumption in the MBSs and FBSs on an individual basis as well as improve the energy efficiency of the cellular networks. We formulate the minimization of the power consumption for the MBSs and FBSs as well as an optimization problem to maximize the energy efficiency subject to throughput outage constraints, which can be solved by the Karush-Kuhn-Tucker (KKT) conditions according to the femto tier BS density. We also formulate and compare the coverage probability and the energy efficiency in HCN scenarios with and without coordinated multi-point (CoMP) to avoid coverage holes

    Multidimensional Index Modulation for 5G and Beyond Wireless Networks

    Get PDF
    This study examines the flexible utilization of existing IM techniques in a comprehensive manner to satisfy the challenging and diverse requirements of 5G and beyond services. After spatial modulation (SM), which transmits information bits through antenna indices, application of IM to orthogonal frequency division multiplexing (OFDM) subcarriers has opened the door for the extension of IM into different dimensions, such as radio frequency (RF) mirrors, time slots, codes, and dispersion matrices. Recent studies have introduced the concept of multidimensional IM by various combinations of one-dimensional IM techniques to provide higher spectral efficiency (SE) and better bit error rate (BER) performance at the expense of higher transmitter (Tx) and receiver (Rx) complexity. Despite the ongoing research on the design of new IM techniques and their implementation challenges, proper use of the available IM techniques to address different requirements of 5G and beyond networks is an open research area in the literature. For this reason, we first provide the dimensional-based categorization of available IM domains and review the existing IM types regarding this categorization. Then, we develop a framework that investigates the efficient utilization of these techniques and establishes a link between the IM schemes and 5G services, namely enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable low-latency communication (URLLC). Additionally, this work defines key performance indicators (KPIs) to quantify the advantages and disadvantages of IM techniques in time, frequency, space, and code dimensions. Finally, future recommendations are given regarding the design of flexible IM-based communication systems for 5G and beyond wireless networks.Comment: This work has been submitted to Proceedings of the IEEE for possible publicatio

    A comparison of OFDM and GFDM-based MFSK modulation schemes for robust IoT applications

    Get PDF

    Coexisting analysis of 5G waveforms with ISDB-T system in tv white spaces

    Get PDF
    The efficient use of the electromagnetic spectrum becomes increasingly necessary due to the increase number of cellular devices. One possible solution is the opportunistic spectrum use in the VHF and UHF bands, allocated for television broadcasting. Therefore, it is necessary to evaluate the concurrent operation of broadcasting and mobile communication systems. This work aims to identify, analyze and measure the interoperability between those systems, by evaluating the feasibility of coexistence of different types of services. In this article, evaluations were made on two major candidates for the next cellular generation, the GFDM and the F-OFDM, operating along with the Integrated Services Digital Broadcasting Terrestrial – ISDB-T standard. The results show the flexibility of the GFDM and F-OFDM waveforms over the OFDM waveform, thus enabling opportunistic use of the spectrum over licensed and unlicensed users.Agência 1O uso eficiente do espectro eletromagnético torna-se cada vez mais necessário devido a o aumento do número de aparelhos celulares. Uma solução possível é o espectro oportunista utilização nas faixas de VHF e UHF, destinadas à difusão televisiva. Portanto, é necessário avaliar a operação simultânea de radiodifusão e comunicação móvel sistemas. Este trabalho tem como objetivo identificar, analisar e medir a interoperabilidade. entre esses sistemas, avaliando a viabilidade de coexistência de diferentes tipos de serviços. Neste artigo, as avaliações foram feitas em dois grandes candidatos para o próximo celular geração, o GFDM e o F-OFDM, operando em conjunto com os Serviços Integrados Radiodifusão Digital Terrestre - padrão ISDB-T. Os resultados mostram a flexibilidade do Formas de onda GFDM e F-OFDM sobre a forma de onda OFDM, permitindo assim uso do espectro sobre usuários licenciados e não licenciados

    Filtered multi-carrier modulations for industrial wireless communications based on cognitive radio

    Get PDF
    Doktoretza-tesi honetako helburu nagusia, hari gabeko komunikazio industrialetarako fidagarritasun maila onargarria eman dezakeen maila fisikoko modulazio bat aurkitzea da. Eremu industrialetako radio bidezko kanaletan ematen diren komunikazioetarako baldintza bereziki aurkakoak direla eta, helburu hori lortzea benetako erronkatzat jo liteke. Gainera, modulazio horrek \Radio Cognitiva" deritzoten teknikekin bateragarria izan beharra dauka, hauek hari gabeko komunikazioen fidagarritasuna hobetzeko gaitasuna baitute. Bibliografian oinarrituz, gaur egungo baliabideekin hari gabeko komunikazio industrial kasu ugariri konponbidea emateko aukera badela ondoriozta genezake, baina ez kasu guztiei ordea. Hari gabeko kanalen egoera bereziki aurkakoa denerako eta komunikazio sistemek denbora muga bereziki zorrotzak bete behar dituztenerako, ezta erantzun nahikoa ona eman lezakeen hari gabeko komunikazio sistema industrialik bibliografia zientifikoan. Hori dela eta, doktoretza tesi honetan, \Radio Cognitiva" delakoa eta 5G-rako aurreikusita dauden filtro bankuetan oinarrituriko modulazio multigarraiatzaileak bezalako teknologia hasiberrietara jotzen dugu, aurrez aipaturiko arazoari konponbide berriak bilatu nahian. Bibliografian dauden filtro bankuetan oinarrituriko modulazio multi-garraiatzaileak aztertu eta ondoren beraien egokitasuna ebaluatzen dugu, kanal dispertsiboen aurkako sendotasuna eta \Radio Cognitiva" teknikekin izan lezaketen bateragarritasuna irizpide hartuz. Ebaluaketa horretan oinarrituz, doktoretza-tesi honetan \Radio Cognitiva" teknikekin bateragarria den WCP-COQAM proposatzen dugu modulazio industrial gisa. Modulazio teknika berau erakusteaz gain, bibliografian eskuragarri ez dauden WCP-COQAM-rentzat sinkronizazio eta kanal estimazio teknikak ere aurkezten ditugu.El objetivo principal de esta tesis doctoral consiste en encontrar una modulación de capa física capaz de proporcionar robustez y fiabilidad suficientes a sistemas de comunicaciones inalámbricas industriales. Esto supone un desafío, dadas las adversas condiciones del canal inalámbrico propias de entornos industriales. Además, dicha modulación debería presentar una alta compatibilidad con las técnicas de Radio Cognitiva, debido al potencial de éstas para mejorar la fiabilidad de las comunicaciones inalámbricas. Basándonos en la bibliografía, concluimos que las soluciones presentes en el estado del arte actual cubren una amplia variedad de escenarios dentro de las comunicaciones inalámbricas industriales, pero no todas. Para los escenarios con canales altamente dispersivos y requerimientos de tiempo especialmente estrictos, no existe ninguna solución en la industria ni dentro de la bibliografía científica. En esta tesis doctoral nos centramos en tecnologías incipientes como la Radio Cognitiva y las modulaciones multi-portadora con bancos de filtros para 5G para tratar de buscar nuevas soluciones al problema anteriormente descrito. Por lo tanto, analizamos algunas de las técnicas multi-portadora con bancos de filtros presentes en la bibliografía científica y las evaluamos basándonos en su robustez frente a canales altamente dispersivos y su compatibilidad con la Radio Cognitiva. Basándonos en dicha evaluación, proponemosWCP-COQAM como posible candidata a modulación industrial compatible con Radio Cognitiva. Además de la propia técnica de modulación, presentamos métodos de sincronización y estimación de canal para la misma que no se encuentran presentes en el estado del arte.The main goal of this doctoral thesis is to find a physical layer modulation able to provide high enough robustness and reliability levels for wireless industrial communications systems. Considering the harsh wireless channel conditions of industrial environments, that goal implies a considerable challenge. Besides, this modulation should be highly compatible with Cognitive Radio techniques, due to their potential to improve the reliability of wireless communications. Based on the bibliography, we conclude that the existent solutions in the current state of the art cover a wide range of wireless industrial communications scenarios, but not all of them. There is no solution, neither in the industry nor in the scientific bibliography, for those scenarios involving highly dispersive wireless channels and particularly stringent timeliness requirements. In this doctoral thesis, we focus on upcoming technologies such as Cognitive Radio and multi-carrier modulations based on filter banks for 5G, in order to search new solutions for the aforementioned problem. Therefore, we analyse some of the multi-carrier modulations based on filter banks of the scientific bibliography and we evaluate them in terms of robustness against highly dispersive channels and in terms of compatibility with Cognitive Radio. In this doctoral thesis we propose the modulation WCP-COQAM as possible candidate for industrial wireless modulation and compatible with Cognitive Radio. In addition to the modulation technique itself, we also introduce some synchronization and channel estimation techniques which are not present in the state of the art

    System level 5G evaluation of MIMO-GFDM in an LTE-A platform

    Get PDF
    corecore