200 research outputs found

    Microwave Indices from Active and Passive Sensors for Remote Sensing Applications

    Get PDF
    Past research has comprehensively assessed the capabilities of satellite sensors operating at microwave frequencies, both active (SAR, scatterometers) and passive (radiometers), for the remote sensing of Earth’s surface. Besides brightness temperature and backscattering coefficient, microwave indices, defined as a combination of data collected at different frequencies and polarizations, revealed a good sensitivity to hydrological cycle parameters such as surface soil moisture, vegetation water content, and snow depth and its water equivalent. The differences between microwave backscattering and emission at more frequencies and polarizations have been well established in relation to these parameters, enabling operational retrieval algorithms based on microwave indices to be developed. This Special Issue aims at providing an overview of microwave signal capabilities in estimating the main land parameters of the hydrological cycle, e.g., soil moisture, vegetation water content, and snow water equivalent, on both local and global scales, with a particular focus on the applications of microwave indices

    Monitoring Snow Cover and Snowmelt Dynamics and Assessing their Influences on Inland Water Resources

    Get PDF
    Snow is one of the most vital cryospheric components owing to its wide coverage as well as its unique physical characteristics. It not only affects the balance of numerous natural systems but also influences various socio-economic activities of human beings. Notably, the importance of snowmelt water to global water resources is outstanding, as millions of populations rely on snowmelt water for daily consumption and agricultural use. Nevertheless, due to the unprecedented temperature rise resulting from the deterioration of climate change, global snow cover extent (SCE) has been shrinking significantly, which endangers the sustainability and availability of inland water resources. Therefore, in order to understand cryo-hydrosphere interactions under a warming climate, (1) monitoring SCE dynamics and snowmelt conditions, (2) tracking the dynamics of snowmelt-influenced waterbodies, and (3) assessing the causal effect of snowmelt conditions on inland water resources are indispensable. However, for each point, there exist many research questions that need to be answered. Consequently, in this thesis, five objectives are proposed accordingly. Objective 1: Reviewing the characteristics of SAR and its interactions with snow, and exploring the trends, difficulties, and opportunities of existing SAR-based SCE mapping studies; Objective 2: Proposing a novel total and wet SCE mapping strategy based on freely accessible SAR imagery with all land cover classes applicability and global transferability; Objective 3: Enhancing total SCE mapping accuracy by fusing SAR- and multi-spectral sensor-based information, and providing total SCE mapping reliability map information; Objective 4: Proposing a cloud-free and illumination-independent inland waterbody dynamics tracking strategy using freely accessible datasets and services; Objective 5: Assessing the influence of snowmelt conditions on inland water resources

    Remote Sensing of Environmental Changes in Cold Regions

    Get PDF
    This Special Issue gathers papers reporting recent advances in the remote sensing of cold regions. It includes contributions presenting improvements in modeling microwave emissions from snow, assessment of satellite-based sea ice concentration products, satellite monitoring of ice jam and glacier lake outburst floods, satellite mapping of snow depth and soil freeze/thaw states, near-nadir interferometric imaging of surface water bodies, and remote sensing-based assessment of high arctic lake environment and vegetation recovery from wildfire disturbances in Alaska. A comprehensive review is presented to summarize the achievements, challenges, and opportunities of cold land remote sensing

    Remote Sensing of the Aquatic Environments

    Get PDF
    The book highlights recent research efforts in the monitoring of aquatic districts with remote sensing observations and proximal sensing technology integrated with laboratory measurements. Optical satellite imagery gathered at spatial resolutions down to few meters has been used for quantitative estimations of harmful algal bloom extent and Chl-a mapping, as well as winds and currents from SAR acquisitions. The knowledge and understanding gained from this book can be used for the sustainable management of bodies of water across our planet

    Characterizing a Multi-Sensor System for Terrestrial Freshwater Remote Sensing via an Observing System Simulation Experiment (OSSE)

    Get PDF
    Terrestrial freshwater storage (TWS) is the vertically-integrated sum of snow, ice, soilmoisture, vegetation water content, surface water impoundments, and groundwater. Among these components, snow, soil moisture, and vegetation are the most dynamic (i.e., shortest residence time) as well as the most variable across space. However, accurately retrieving estimates of snow, soil moisture, or vegetation using space-borne sensors often requires simultaneous knowledge of one or more of the other components. In other words, reasonably characterizing terrestrial freshwater requires careful consideration of the coupled snow-soil moisture-vegetation response that is implicit in both TWS and the hydrologic cycle. One challenge is to optimally determine the multi-variate, multi-sensor remote sensing observations needed to best characterize the coupled snow-soil moisture-vegetation system. Different types of sensors each have their own unique strengths and limitations. Meanwhile, remote sensing data is inherently discontinuous across time and space, and that the revisit cycle of remote sensing observations will dictate much of the efficacy in capturing the dynamics of the coupled snow-soil moisture-vegetation response. This study investigates different snow sensors and simulates the sensor coverage as a function of different orbital configurations and sensor properties in order to quantify the discontinuous nature of remotely-sensed observations across space and time. The information gleaned from this analysis, coupled with a time-varying snow binary map, is used to evaluate the efficacy of a single sensor (or constellation of sensors) to estimate terrestrial snow on a global scale. A suite of different combinations, and permutations, of different sensors, including different orbital characteristics, is explored with respect to 1-day, 3-day, and 30-day repeat intervals. The results show what can, and what cannot, be observed by different sensors. The results suggest that no single sensor can accurately measure all types of snow, but that a constellation composed of different types of sensors could better compensate for the limitations of a single type of sensor. Even though only snow is studied here, a similar procedure could be conducted for soil moisture or vegetation. To better investigate the coupled snow-soil moisture-vegetation system, an observing system simulation experiment (OSSE) is designed in order to explore the value of coordinated observations of these three separate, yet mutually dependent, state variables. In the experiment, a “synthetic truth” of snow water equivalent, surface soil moisture, and/or vegetation biomass is generated using the NoahMP-4.0.1 land surface model within the NASA Land Information System (LIS). Afterwards, a series of hypothetical sensors with different orbital configurations is prescribed in order to retrieve snow, soil moisture, and vegetation. The ground track and footprint of each sensor is approximated using the Trade-space Analysis Tool for Constellations (TAT-C) simulator. A space-time subsampler predicated on the output from TAT-C is then applied to the synthetic truth. Furthermore, a hypothesized amount of observation error is injected into the synthetic truth in order to yield a realistic synthetic retrieval for each of the hypothetical sensor configurations considered as part of this dissertation. The synthetic retrievals are then assimilated into the NoahMP-4.0.1 land surface model using different boundary conditions from those used to generate the synthetic truth such that the differences between the two sets of boundary conditions serve as a realistic proxy for real-world boundary condition errors. A baseline Open Loop simulation where no retrievals are assimilated is conducted in order to evaluate the added utility associated with assimilation of one (or more) of the synthetic retrievals. The impact of the assimilation of a given suite of one or more retrievals on land surface model estimates of snow, soil moisture, vegetation, and runoff serve as a numeric laboratory in order to assess which sensor(s), either separate or in a coordinated fashion, yield the most utility in terms of improved model performance. The results from this OSSE show that the assimilation of a single type of retrieval (i.e., snow or soil moisture or vegetation) may only improve the estimation of a small part of the snow-soil moisture-vegetation system, but may also degrade of other parts of that same system. Alternatively, the assimilation of more than one type of retrieval may yield greater benefits to all the components of the snow-soil moisture-vegetation system, because it yields a more complete, holistic view of the coupled system. This OSSE framework could potentially serve as an aid to mission planners in determining how to get the most observational “bang for the buck” based on the myriad of different sensor types, orbital configurations, and error characteristics available in the selection of a future terrestrial freshwater mission

    Earth resources: A continuing bibliography with indexes (issue 61)

    Get PDF
    This bibliography lists 606 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1989. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors, and economic analysis

    Cryosphere Applications

    Get PDF
    Synthetic aperture radar (SAR) provides large coverage and high resolution, and it has been proven to be sensitive to both surface and near-surface features related to accumulation, ablation, and metamorphism of snow and firn. Exploiting this sensitivity, SAR polarimetry and polarimetric interferometry found application to land ice for instance for the estimation of wave extinction (which relates to sub surface ice volume structure) and for the estimation of snow water equivalent (which relates to snow density and depth). After presenting these applications, the Chapter proceeds by reviewing applications of SAR polarimetry to sea ice for the classification of different ice types, the estimation of thickness, and the characterisation of its surface. Finally, an application to the characterisation of permafrost regions is considered. For each application, the used (model-based) decomposition and polarimetric parameters are critically described, and real data results from relevant airborne campaigns and space borne acquisitions are reported

    Vegetation, topography and snow melt at the Forest-Tundra Ecotone in arctic Europe: a study using synthetic aperture radar

    Get PDF
    This research was conducted as part of DART (Dynamic Response of the Forest-Tundra Ecotone to Environmental Change), a four year (1998-2002) European Commission funded international programme of research addressing the potential dynamic response of the (mountain birch) forest-tundra ecotone to environmental change. Satellite remote sensing was used to map landscape scale (lO(^1)-lO(^3) m) patterns of vegetation and spatial dynamics of snow melt at the forest-tundra ecotone at three sites along ca. an 8º latitudinal gradient in the Fermoscandian mountain range. Vegetation at the forest-tundra ecotone was mapped using visible -near infrared (VIR) satellite imagery, with class definition dependent on the timing of the acquisition of imagery (related to highly dynamic vegetation phenology) and spatial variation in the FTE. Multi-temporal spacebome ERS-2 synthetic aperture radar (SAR) was used for mapping snow melt. Comprehensive field measurements of snow properties and meteorological data combined with a physically based snow backscatter model indicated potential for mapping wet snow cover at each site. Significant temporal backscatter signatures enabled a classification algorithm to be developed to map the pattern of snow melt across the forest- tundra ecotone. However, diurnal and seasonal melt-freeze effects relative to the timing of ERS-2 SAR image acquisition effectively reduce the temporal resolution of data. Further, the study sites with large topographic variation and complex vegetative cover, provided a challenging operating environment and problems were identified with the robustness of classification during the later stages of snow melt because of the effects of vegetation. Significant associations were identified between vegetation, topography, and snow melt despite limitations in the snow mapping

    Multivariate data assimilation in snow modelling at Alpine sites

    Get PDF
    The knowledge of snowpack dynamics is of critical importance to several real-time applications such as agricultural production, water resource management, flood prevention, hydropower generation, especially in mountain basins. Snowpack state can be estimated by models or from observations, even though both these sources of information are affected by several errors
    corecore