3,404 research outputs found

    A Web2.0 Strategy for the Collaborative Analysis of Complex Bioimages

    Get PDF
    Loyek C, Kölling J, Langenkämper D, Niehaus K, Nattkemper TW. A Web2.0 Strategy for the Collaborative Analysis of Complex Bioimages. In: Gama J, Bradley E, Hollmén J, eds. Advances in Intelligent Data Analysis X: 10th International Symposium, IDA 2011, Porto, Portugal, October 29-31, 2011. Proceedings. Lecture Notes in Computer Science. Vol 7014. Berlin, Heidelberg: Springer; 2011: 258-269

    A primer on correlation-based dimension reduction methods for multi-omics analysis

    Full text link
    The continuing advances of omic technologies mean that it is now more tangible to measure the numerous features collectively reflecting the molecular properties of a sample. When multiple omic methods are used, statistical and computational approaches can exploit these large, connected profiles. Multi-omics is the integration of different omic data sources from the same biological sample. In this review, we focus on correlation-based dimension reduction approaches for single omic datasets, followed by methods for pairs of omics datasets, before detailing further techniques for three or more omic datasets. We also briefly detail network methods when three or more omic datasets are available and which complement correlation-oriented tools. To aid readers new to this area, these are all linked to relevant R packages that can implement these procedures. Finally, we discuss scenarios of experimental design and present road maps that simplify the selection of appropriate analysis methods. This review will guide researchers navigate the emerging methods for multi-omics and help them integrate diverse omic datasets appropriately and embrace the opportunity of population multi-omics.Comment: 30 pages, 2 figures, 6 table

    Visualization and Interaction for Knowledge Discovery in Simulation Data

    Get PDF
    Discrete-event simulation is an established and popular technology for investigating the dynamic behavior of complex manufacturing and logistics systems. Besides traditional simulation studies that focus on single model aspects, data farming describes an approach for using the simulation model as a data generator for broad scale experimentation with a broader coverage of the system behavior. On top of that we developed a process called knowledge discovery in simulation data that enhances the data farming concept by using data mining methods for the data analysis. In order to uncover patterns and causal relationships in the model, a visually guided analysis then enables an exploratory data analysis. While our previous work mainly focused on the application of suitable data mining methods, we address suitable visualization and interaction methods in this paper. We present those in a conceptual framework followed by an exemplary demonstration in an academic case study

    Methodological challenges and analytic opportunities for modeling and interpreting Big Healthcare Data

    Full text link
    Abstract Managing, processing and understanding big healthcare data is challenging, costly and demanding. Without a robust fundamental theory for representation, analysis and inference, a roadmap for uniform handling and analyzing of such complex data remains elusive. In this article, we outline various big data challenges, opportunities, modeling methods and software techniques for blending complex healthcare data, advanced analytic tools, and distributed scientific computing. Using imaging, genetic and healthcare data we provide examples of processing heterogeneous datasets using distributed cloud services, automated and semi-automated classification techniques, and open-science protocols. Despite substantial advances, new innovative technologies need to be developed that enhance, scale and optimize the management and processing of large, complex and heterogeneous data. Stakeholder investments in data acquisition, research and development, computational infrastructure and education will be critical to realize the huge potential of big data, to reap the expected information benefits and to build lasting knowledge assets. Multi-faceted proprietary, open-source, and community developments will be essential to enable broad, reliable, sustainable and efficient data-driven discovery and analytics. Big data will affect every sector of the economy and their hallmark will be ‘team science’.http://deepblue.lib.umich.edu/bitstream/2027.42/134522/1/13742_2016_Article_117.pd

    Document Collection Visualization and Clustering Using An Atom Metaphor for Display and Interaction

    Get PDF
    Visual Data Mining have proven to be of high value in exploratory data analysis and data mining because it provides an intuitive feedback on data analysis and support decision-making activities. Several visualization techniques have been developed for cluster discovery such as Grand Tour, HD-Eye, Star Coordinates, etc. They are very useful tool which are visualized in 2D or 3D; however, they have not simple for users who are not trained. This thesis proposes a new approach to build a 3D clustering visualization system for document clustering by using k-mean algorithm. A cluster will be represented by a neutron (centroid) and electrons (documents) which will keep a distance with neutron by force. Our approach employs quantified domain knowledge and explorative observation as prediction to map high dimensional data onto 3D space for revealing the relationship among documents. User can perform an intuitive visual assessment of the consistency of the cluster structure

    Development of a geovisual analytics environment using parallel coordinates with applications to tropical cyclone trend analysis

    Get PDF
    A global transformation is being fueled by unprecedented growth in the quality, quantity, and number of different parameters in environmental data through the convergence of several technological advances in data collection and modeling. Although these data hold great potential for helping us understand many complex and, in some cases, life-threatening environmental processes, our ability to generate such data is far outpacing our ability to analyze it. In particular, conventional environmental data analysis tools are inadequate for coping with the size and complexity of these data. As a result, users are forced to reduce the problem in order to adapt to the capabilities of the tools. To overcome these limitations, we must complement the power of computational methods with human knowledge, flexible thinking, imagination, and our capacity for insight by developing visual analysis tools that distill information into the actionable criteria needed for enhanced decision support. In light of said challenges, we have integrated automated statistical analysis capabilities with a highly interactive, multivariate visualization interface to produce a promising approach for visual environmental data analysis. By combining advanced interaction techniques such as dynamic axis scaling, conjunctive parallel coordinates, statistical indicators, and aerial perspective shading, we provide an enhanced variant of the classical parallel coordinates plot. Furthermore, the system facilitates statistical processes such as stepwise linear regression and correlation analysis to assist in the identification and quantification of the most significant predictors for a particular dependent variable. These capabilities are combined into a unique geovisual analytics system that is demonstrated via a pedagogical case study and three North Atlantic tropical cyclone climate studies using a systematic workflow. In addition to revealing several significant associations between environmental observations and tropical cyclone activity, this research corroborates the notion that enhanced parallel coordinates coupled with statistical analysis can be used for more effective knowledge discovery and confirmation in complex, real-world data sets
    corecore