17 research outputs found

    Toward a Human-Centered Uml for Risk Analysis

    Full text link
    Safety is now a major concern in many complex systems such as medical robots. A way to control the complexity of such systems is to manage risk. The first and important step of this activity is risk analysis. During risk analysis, two main studies concerning human factors must be integrated: task analysis and human error analysis. This multidisciplinary analysis often leads to a work sharing between several stakeholders who use their own languages and techniques. This often produces consistency errors and understanding difficulties between them. Hence, this paper proposes to treat the risk analysis on the common expression language UML (Unified Modeling Language) and to handle human factors concepts for task analysis and human error analysis based on the features of this language. The approach is applied to the development of a medical robot for teleechography

    Medical robots with potential applications in participatory and opportunistic remote sensing: A review

    Get PDF
    Among numerous applications of medical robotics, this paper concentrates on the design, optimal use and maintenance of the related technologies in the context of healthcare, rehabilitation and assistive robotics, and provides a comprehensive review of the latest advancements in the foregoing field of science and technology, while extensively dealing with the possible applications of participatory and opportunistic mobile sensing in the aforementioned domains. The main motivation for the latter choice is the variety of such applications in the settings having partial contributions to functionalities such as artery, radiosurgery, neurosurgery and vascular intervention. From a broad perspective, the aforementioned applications can be realized via various strategies and devices benefiting from detachable drives, intelligent robots, human-centric sensing and computing, miniature and micro-robots. Throughout the paper tens of subjects, including sensor-fusion, kinematic, dynamic and 3D tissue models are discussed based on the existing literature on the state-of-the-art technologies. In addition, from a managerial perspective, topics such as safety monitoring, security, privacy and evolutionary optimization of the operational efficiency are reviewed

    Suivi des vaisseaux sanguins en temps réel à partir d’images ultrasonores mode-B et reconstruction 3D : application à la caractérisation des sténoses artérielles

    Full text link
    La maladie des artères périphériques (MAP) se manifeste par une réduction (sténose) de la lumière de l’artère des membres inférieurs. Elle est causée par l’athérosclérose, une accumulation de cellules spumeuses, de graisse, de calcium et de débris cellulaires dans la paroi artérielle, généralement dans les bifurcations et les ramifications. Par ailleurs, la MAP peut être causée par d`autres facteurs associés comme l’inflammation, une malformation anatomique et dans de rares cas, au niveau des artères iliaques et fémorales, par la dysplasie fibromusculaire. L’imagerie ultrasonore est le premier moyen de diagnostic de la MAP. La littérature clinique rapporte qu’au niveau de l’artère fémorale, l’écho-Doppler montre une sensibilité de 80 à 98 % et une spécificité de 89 à 99 % à détecter une sténose supérieure à 50 %. Cependant, l’écho-Doppler ne permet pas une cartographie de l’ensemble des artères des membres inférieurs. D’autre part, la reconstruction 3D à partir des images échographiques 2D des artères atteintes de la MAP est fortement opérateur dépendant à cause de la grande variabilité des mesures pendant l’examen par les cliniciens. Pour planifier une intervention chirurgicale, les cliniciens utilisent la tomodensitométrie (CTA), l’angiographie par résonance magnétique (MRA) et l’angiographie par soustraction numérique (DSA). Il est vrai que ces modalités sont très performantes. La CTA montre une grande précision dans la détection et l’évaluation des sténoses supérieures à 50 % avec une sensibilité de 92 à 97 % et une spécificité entre 93 et 97 %. Par contre, elle est ionisante (rayon x) et invasive à cause du produit de contraste, qui peut causer des néphropathies. La MRA avec injection de contraste (CE MRA) est maintenant la plus utilisée. Elle offre une sensibilité de 92 à 99.5 % et une spécificité entre 64 et 99 %. Cependant, elle sous-estime les sténoses et peut aussi causer une néphropathie dans de rares cas. De plus les patients avec stents, implants métalliques ou bien claustrophobes sont exclus de ce type d`examen. La DSA est très performante mais s`avère invasive et ionisante. Aujourd’hui, l’imagerie ultrasonore (3D US) s’est généralisée surtout en obstétrique et échocardiographie. En angiographie il est possible de calculer le volume de la plaque grâce à l’imagerie ultrasonore 3D, ce qui permet un suivi de l’évolution de la plaque athéromateuse au niveau des vaisseaux. L’imagerie intravasculaire ultrasonore (IVUS) est une technique qui mesure ce volume. Cependant, elle est invasive, dispendieuse et risquée. Des études in vivo ont montré qu’avec l’imagerie 3D-US on est capable de quantifier la plaque au niveau de la carotide et de caractériser la géométrie 3D de l'anastomose dans les artères périphériques. Par contre, ces systèmes ne fonctionnent que sur de courtes distances. Par conséquent, ils ne sont pas adaptés pour l’examen de l’artère fémorale, à cause de sa longueur et de sa forme tortueuse. L’intérêt pour la robotique médicale date des années 70. Depuis, plusieurs robots médicaux ont été proposés pour la chirurgie, la thérapie et le diagnostic. Dans le cas du diagnostic artériel, seuls deux prototypes sont proposés, mais non commercialisés. Hippocrate est le premier robot de type maitre/esclave conçu pour des examens des petits segments d’artères (carotide). Il est composé d’un bras à 6 degrés de liberté (ddl) suspendu au-dessus du patient sur un socle rigide. À partir de ce prototype, un contrôleur automatisant les déplacements du robot par rétroaction des images échographiques a été conçu et testé sur des fantômes. Le deuxième est le robot de la Colombie Britannique conçu pour les examens à distance de la carotide. Le mouvement de la sonde est asservi par rétroaction des images US. Les travaux publiés avec les deux robots se limitent à la carotide. Afin d’examiner un long segment d’artère, un système robotique US a été conçu dans notre laboratoire. Le système possède deux modes de fonctionnement, le mode teach/replay (voir annexe 3) et le mode commande libre par l’utilisateur. Dans ce dernier mode, l’utilisateur peut implémenter des programmes personnalisés comme ceux utilisés dans ce projet afin de contrôler les mouvements du robot. Le but de ce projet est de démontrer les performances de ce système robotique dans des conditions proches au contexte clinique avec le mode commande libre par l’utilisateur. Deux objectifs étaient visés: (1) évaluer in vitro le suivi automatique et la reconstruction 3D en temps réel d’une artère en utilisant trois fantômes ayant des géométries réalistes. (2) évaluer in vivo la capacité de ce système d'imagerie robotique pour la cartographie 3D en temps réel d'une artère fémorale normale. Pour le premier objectif, la reconstruction 3D US a été comparée avec les fichiers CAD (computer-aided-design) des fantômes. De plus, pour le troisième fantôme, la reconstruction 3D US a été comparée avec sa reconstruction CTA, considéré comme examen de référence pour évaluer la MAP. Cinq chapitres composent ce mémoire. Dans le premier chapitre, la MAP sera expliquée, puis dans les deuxième et troisième chapitres, l’imagerie 3D ultrasonore et la robotique médicale seront développées. Le quatrième chapitre sera consacré à la présentation d’un article intitulé " A robotic ultrasound scanner for automatic vessel tracking and three-dimensional reconstruction of B-mode images" qui résume les résultats obtenus dans ce projet de maîtrise. Une discussion générale conclura ce mémoire. L’article intitulé " A 3D ultrasound imaging robotic system to detect and quantify lower limb arterial stenoses: in vivo feasibility " de Marie-Ange Janvier et al dans l’annexe 3, permettra également au lecteur de mieux comprendre notre système robotisé. Ma contribution dans cet article était l’acquisition des images mode B, la reconstruction 3D et l’analyse des résultats pour le patient sain.Locating and quantifying stenosis length and severity are essential for planning adequate treatment of peripheral arterial disease (PAD). To do this, clinicians use imaging methods such as ultrasound (US), Magnetic Resonance Angiography (MRA) and Computed Tomography Angiography (CTA). However, US examination cannot provide maps of entire lower limb arteries in 3D, MRA is expensive and invasive, CTA is ionizing and also invasive. We propose a new 3D-US robotic system with B-mode images, which is non-ionizing, non-invasive, and is able to track and reconstruct in 3D the superficial femoral artery from the iliac down to the popliteal artery, in real time. In vitro, 3D-US reconstruction was evaluated for simple and complex geometries phantoms in comparison with their computer-aided-design (CAD) file in terms of lengths, cross sectional areas and stenosis severity. In addition, for the phantom with a complex geometry, an evaluation was realized using Hausdorff distance, cross-sectional area and stenosis severity in comparison with 3D reconstruction with CTA. A mean Hausdorff distance of 0.97± 0.46 mm was found for 3D-US compared to 3D-CTA vessel representations. In vitro investigation to evaluate stenosis severity when compared with the original phantom CAD file showed that 3D-US reconstruction, with 3%-6% error, is better than 3D-CTA reconstruction, with 4-13% error. The in vivo system’s feasibility to reconstruct a normal femoral artery segment of a volunteer was also investigated. All of these promising results show that our ultrasound robotic system is able to track automatically the vessel and reconstruct it in 3D as well as CTA. Clinically, our system will allow firstly to the radiologist to have 3D images readily interpretable and secondly, to avoid radiation and contrast agent for patients

    State-based Safety of Component-based Medical and Surgical Robot Systems

    Get PDF
    Safety has not received sufficient attention in the medical robotics community despite a consensus of its paramount importance and the pioneering work in the early 90s. Partly because of its emergent and non-functional characteristics, it is challenging to capture and represent the design of safety features in a consistent, structured manner. In addition, significant engineering efforts are required in practice when designing and developing medical robot systems with safety. Still, academic researchers in medical robotics have to deal with safety to perform clinical studies. This dissertation presents the concept, model and architecture to reformulate safety as a visible, reusable, and verifiable property, rather than an embedded, hard-to-reuse, and hard-to-test property that is tightly coupled with the system. The concept enables reuse and structured understanding of the design of safety features, and the model allows the system designers to explicitly define and capture the run-time status of component-based systems with support for error propagation. The architecture leverages the benefits of the concept and the model by decomposing safety features into reusable mechanisms and configurable specifications. We show the concept and feasibility of the proposed methods by building an open source framework that aims to facilitate research and development of safety systems of medical robots. Using the cisst component-based framework, we empirically evaluate the proposed methods by applying the developed framework to two research systems -- one based on a commercial robot system for orthopedic surgery and another robot soon to be clinically applied for manipulation of flexible endoscopes

    Study on a Robotic Carotid Blood Flow Measurement System

    Get PDF
    制度:新 ; 報告番号:甲3589号 ; 学位の種類:博士(工学) ; 授与年月日:2012/3/15 ; 早大学位記番号:新592

    A Scalable, High-Performance, Real-Time Control Architecture with Application to Semi-Autonomous Teleoperation

    Get PDF
    A scalable and real-time capable infrastructure is required to enable high-performance control and haptic rendering of systems with many degrees-of-freedom. The specific platform that motivates this thesis work is the open research platform da Vinci ReResearch Kit (dVRK). For the system architecture, we propose a specialized IEEE-1394 (FireWire) broadcast protocol that takes advantage of broadcast and peer-to-peer transfers to minimize the number of transactions, and thus the software overhead, on the control PC, thereby enabling fast real-time control. It has also been extended to Ethernet via a novel Ethernet-to-FireWire bridge protocol. The software architecture consists of a distributed hardware interface layer, a real-time component-based software framework, and integration with the Robot Operating System (ROS). The architecture is scalable to support multiple active manipulators, reconfigurable to enable researchers to partition a full system into multiple independent subsystems, and extensible at all levels of control. This architecture has been applied to two semi-autonomous teleoperation applications. The first application is a suturing task in Robotic Minimally Invasive Surgery (RMIS), that includes the development of virtual fixtures for the needle passing and knot tying sub-tasks, with a multi-user study to verify their effectiveness. The second application concerns time-delayed teleoperation of a robotic arm for satellite servicing. The research contribution includes the development of a line virtual fixture with augmented reality, a test for different time delay configurations and a multi-user study that evaluates the effectiveness of the system

    Human Machine Interaction

    Get PDF
    In this book, the reader will find a set of papers divided into two sections. The first section presents different proposals focused on the human-machine interaction development process. The second section is devoted to different aspects of interaction, with a special emphasis on the physical interaction

    Control techniques for mechatronic assisted surgery

    Get PDF
    The treatment response for traumatic head injured patients can be improved by using an autonomous robotic system to perform basic, time-critical emergency neurosurgery, reducing costs and saving lives. In this thesis, a concept for a neurosurgical robotic system is proposed to perform three specific emergency neurosurgical procedures; they are the placement of an intracranial pressure monitor, external ventricular drainage, and the evacuation of chronic subdural haematoma. The control methods for this system are investigated following a curiosity led approach. Individual problems are interpreted in the widest sense and solutions posed that are general in nature. Three main contributions result from this approach: 1) a clinical evidence based review of surgical robotics and a methodology to assist in their evaluation, 2) a new controller for soft-grasping of objects, and 3) new propositions and theorems for chatter suppression sliding mode controllers. These contributions directly assist in the design of the control system of the neurosurgical robot and, more broadly, impact other areas outside the narrow con nes of the target application. A methodology for applied research in surgical robotics is proposed. The methodology sets out a hierarchy of criteria consisting of three tiers, with the most important being the bottom tier and the least being the top tier. It is argued that a robotic system must adhere to these criteria in order to achieve acceptability. Recent commercial systems are reviewed against these criteria, and are found to conform up to at least the bottom and intermediate tiers. However, the lack of conformity to the criteria in the top tier, combined with the inability to conclusively prove increased clinical benefit, particularly symptomatic benefit, is shown to be hampering the potential of surgical robotics in gaining wide establishment. A control scheme for soft-grasping objects is presented. Grasping a soft or fragile object requires the use of minimum contact force to prevent damage or deformation. Without precise knowledge of object parameters, real-time feedback control must be used to regulate the contact force and prevent slip. Moreover, the controller must be designed to have good performance characteristics to rapidly modulate the fingertip contact force in response to a slip event. A fuzzy sliding mode controller combined with a disturbance observer is proposed for contact force control and slip prevention. The robustness of the controller is evaluated through both simulation and experiment. The control scheme was found to be effective and robust to parameter uncertainty. When tested on a real system, however, chattering phenomena, well known to sliding mode research, was induced by the unmodelled suboptimal components of the system (filtering, backlash, and time delays). This reduced the controller performance. The problem of chattering and potential solutions are explored. Real systems using sliding mode controllers, such as the control scheme for soft-grasping, have a tendency to chatter at high frequencies. This is caused by the sliding mode controller interacting with un-modelled parasitic dynamics at the actuator-input and sensor-output of the plant. As a result, new chatter-suppression sliding mode controllers have been developed, which introduce new parameters into the system. However, the effect any particular choice of parameters has on system performance is unclear, and this can make tuning the parameters to meet a set of performance criteria di cult. In this thesis, common chatter-suppression sliding mode control strategies are surveyed and simple design and estimation methods are proposed. The estimation methods predict convergence, chattering amplitude, settling time, and maximum output bounds (overshoot) using harmonic linearizations and invariant ellipsoid sets

    CISDA Development Process for decision aids to support self-care decision making

    Get PDF
    The self-care management of chronic disease patients is complicated by various everyday decisions that range from routine ill-structured problems, e.g., “What to eat?” to uncertain symptoms-related decisions, e.g., “Why do I feel tired?” Such decisions can have significant consequences on a patient’s health, treatment, care, and associated medical costs. Due to the complexity involved in understanding and analysing everyday decision making, there is a lack of empirical research to guide the development of self-care decision aids. This thesis aims to address this problem by formulating and illustrating the Critical Illness Self-care Decision Aid (CISDA) process through a coherent, structured, integrated design and development process using a case study. Following a literature review, the problems in current approaches and the criteria needed for the development were derived from evidence-based frameworks such as chronic disease management, decision aids standards and complex interventions development process for future designs. Mixed methods were used including: focus groups, interviews, questionnaire, Cognitive Work Analysis and case scenarios for not only constructing an account of self-care needs and decisions but also to evaluate the development process and the decision support provided involving patients, doctors, caregivers, non-medical experts like psychologists and IT/Systems engineers. The CISDA process consists of: (i) needs assessment, (ii) theory formation, (iii) modelling, (iv) integration, (v) interface design and development, and (vi) evaluation for addressing the relevant intersection of human factors, systems engineering, and software engineering. This thesis should prove useful to not only systems engineers but also to a range of practitioners concerned about decision making, maintaining a user's cognitive perspective during specification and analysis of a complex system
    corecore