6,138 research outputs found

    Frontiers of Transdisciplinary Knowledge Management in Digital Humanities

    Get PDF
    oai:ejtas.com:article/2The 4th Industrial Revolution, or 2nd digital revolution, has brought about drastic changes in the economy and society, as technology develops at a rapid pace. Digital humanities take advantage of this technological evolution to uncover new ways to approach the humanities and the social sciences. In particular, the 4IR has enabled the development of new technologies that are facilitating the integration of virtual and physical environments in different digital humanities sectors, such as arts and culture. In addition, it helped digital humanities scholars to analyse massive amounts of data and apply machine learning algorithms to identify patterns, uncover new insights and approach cultural, historical, and literary phenomena in a more comprehensive and differentiated way. In the context of 4IR, the Semantic Web plays a crucial role in enabling machines and humans to access and use the vast amount of data generated by advanced technologies, by providing a common language and structure for data exchange and integration

    Development of a platform recommending 3D and spectral digitisation strategies

    Full text link
    [EN] Spatial and spectral recording of cultural heritage objects is a complex task including data acquisition, processing and analysis involving different technical disciplines. Additionally, the development of a suitable digitisation strategy satisfying the expectations of the humanities experts needs an interdisciplinary dialogue often suffering from misunderstanding and knowledge gaps on both the technical and humanities sides.Through a concerted discussion experts from the cultural heritage and technical domains currently develop a so-called COSCHKR platform (Colour and Space in Cultural Heritage Knowledge Representation) which will give recommendations for spatial and spectral recording strategies adapted to the needs of the cultural heritage application. The platform will make use of an ontology through which the relevant parameters of the different domains involved in the recording, processing, analysis and dissemination of cultural heritage objects are hierarchically structured and are related through rule-based dependencies. Background and basis for this ontology is the fact that a deterministic relation exists between (1) the requirements of a cultural heritage application on spatial, spectral, as well as visual digital information of a cultural heritage object which itself has concrete physical characteristics and (2) the technical possibilities of the spectral and spatial recording devices. Through a case study which deals with the deformation analysis of wooden samples of cultural heritage artefacts this deterministic relationship is illustrated explaining the overall structure and development of the ontology.The aim of the COSCHKR platform is to support cultural heritage experts finding the best suitable recording strategy for their often unique physical cultural heritage object and research question. The platform will support them and will make them aware of the relevant parameters and limitations of the recording strategy with respect to the characteristics of the cultural heritage object, external influences, application, recording devices, and data.This work was partly supported by COST under Action TD1201: Colour and Space in Cultural Heritage (COSCH).Wefers, S.; Karmacharya, A.; Boochs, F. (2016). Development of a platform recommending 3D and spectral digitisation strategies. Virtual Archaeology Review. 7(15):18-27. doi:10.4995/var.2016.5861.SWORD182771

    AUGMENTED TURIN BAROQUE ATRIA: AR EXPERIENCES FOR ENHANCING CULTURAL HERITAGE

    Get PDF
    Abstract. This paper presents the most recent developments in a project aimed to the documentation, storage and dissemination of the cultural heritage. The subject of the project are more than 70 Baroque atria in Turin, recognized by critics for their particular unitary vaulted systems Our research team is currently working on digitizing documents and studying ways to enhance and share these results through ICT. In particular, we want to explore possibilities for recognizing and tracing three-dimensional objects in augmented reality (AR) applications connected to the collected data. Recent developments in this field relate to the technology available on widespread mobile devices such as tablets and smartphones, allowing for real-time 3D scanning. Using software prototypes, we want to introduce some problems involved in integrating this technology into digital archives.</p

    Three-dimensional scanning as a means of archiving sculptures

    Get PDF
    Thesis (M. Tech. Design technology) -- Central University of Technology, Free State, 2011This dissertation outlines a procedural scanning process using the portable ZCorporation ZScanner® 700 and provides an overview of the developments surrounding 3D scanning technologies; specifically their application for archiving Cultural Heritage sites and projects. The procedural scanning process is structured around the identification of 3D data recording variables applicable to the digital archiving of an art museum’s collection of sculptures. The outlining of a procedural 3D scanning environment supports the developing technology of 3D digital archiving in view of artefact preservation and interactive digital accessibility. Presented in this paper are several case studies that record 3D scanning variables such as texture, scale, surface detail, light and data conversion applicable to varied sculptural surfaces and form. Emphasis is placed on the procedural documentation and the anomalies associated with the physical object, equipment used, and the scanning environment. In support of the above, the Cultural Heritage projects that are analyzed prove that 3D portable scanning could provide digital longevity and access to previously inaccessible arenas for a diverse range of digital data archiving infrastructures. The development of 3D data acquisition via scanning, CAD modelling and 2D to 3D data file conversion technologies as well as the aesthetic effect and standards of digital archiving in terms of the artwork – viewer relationship and international practices or criterions of 3D digitizing are analysed. These projects indicate the significant use of optical 3D scanning techniques and their employ on renowned historical artefacts thus emphasizing their importance, safety and effectiveness. The aim with this research is to establish that the innovation and future implications of 3D scanning could be instrumental to future technological advancement in an interdisciplinary capacity to further data capture and processing in various Cultural Heritage diagnostic applications

    Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning

    Get PDF
    The importance of landscape and heritage recording and documentation with optical remote sensing sensors is well recognized at international level. The continuous development of new sensors, data capture methodologies and multi-resolution 3D representations, contributes significantly to the digital 3D documentation, mapping, conservation and representation of landscapes and heritages and to the growth of research in this field. This article reviews the actual optical 3D measurement sensors and 3D modeling techniques, with their limitations and potentialities, requirements and specifications. Examples of 3D surveying and modeling of heritage sites and objects are also shown throughout the paper

    A Web GIS-based Integration of 3D Digital Models with Linked Open Data for Cultural Heritage Exploration

    Get PDF
    This PhD project explores how geospatial semantic web concepts, 3D web-based visualisation, digital interactive map, and cloud computing concepts could be integrated to enhance digital cultural heritage exploration; to offer long-term archiving and dissemination of 3D digital cultural heritage models; to better interlink heterogeneous and sparse cultural heritage data. The research findings were disseminated via four peer-reviewed journal articles and a conference article presented at GISTAM 2020 conference (which received the ‘Best Student Paper Award’)

    ArchAIDE-Archaeological Automatic Interpretation and Documentation of cEramics

    Get PDF
    The goals of H2020 project "ArchAIDE: are to support the classification and interpretation work of archaeologists with innovative computer-based tools, able to provide the user with features for the semi-automatic description and matching of potsherds over the huge existing ceramic catalogues. Pottery classification is of fundamental importance for the comprehension and dating of the archaeological contexts, and for understanding production, trade flows and social interactions, but it requires complex skills and it is a very time consuming activity, both for researchers and professionals. The aim of ArchAIDE is to support the work of archaeologists, in order to meet real user needs and generate economic benefits, reducing time and costs. This would create societal benefits from cultural heritage, improving access, re-use and exploitation of the digital cultural heritage in a sustainable way. These objectives will be achieved through the development of: - an as-automatic-as-possible procedure to transform the paper catalogues in a digital description, to be used as a data pool for search and retrieval process; - a tool (mainly designed for mobile devices) that will support archaeologists in recognizing and classifying potsherds during excavation and post-excavation analysis, through an easy-to-use interface and efficient algorithms for characterisation, search and retrieval of the visual/geometrical correspondences; - an automatic procedure to derive a complete potsherds identity card by transforming the data collected into a formatted electronic document, printable or visual; - a web-based real-time data visualisation to improve access to archaeological heritage and generate new understanding; - an open archive to allow the archival and re-use of archaeological data, transforming them into common heritage and permitting economic sustainability. Those tools will be tested and assessed on real-cases scenarios, paving the way to future exploitation

    Data Modelling in Architecture: Digital Architectural Representations

    Get PDF
    Digital Architectural Representations represent the most fruitful field of research of the last decade. Digital technologies and the use of internet in architectural representation shows how 3D visualization combined with storytelling can help to spread scientific knowledge over the web. These new technologies also affect the way of thinking 3D models, how to design them and how to build their related knowledge with the purpose of future reuse of information and data. The paper is focused on the analysis of current methodologies and workflows for data modelling in Architecture to better understand the potential of using standards in the 3D modelling sector with a focus on cultural and architectural heritage

    Across Space and Time. Papers from the 41st Conference on Computer Applications and Quantitative Methods in Archaeology, Perth, 25-28 March 2013

    Get PDF
    This volume presents a selection of the best papers presented at the forty-first annual Conference on Computer Applications and Quantitative Methods in Archaeology. The theme for the conference was "Across Space and Time", and the papers explore a multitude of topics related to that concept, including databases, the semantic Web, geographical information systems, data collection and management, and more
    • …
    corecore