33,160 research outputs found

    Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation

    Get PDF
    Autonomous guided vehicles (AGVs) are driverless material handling systems used for transportation of pallets and line side supply of materials to provide flexibility and agility in shop-floor logistics. Scheduling of shop-floor logistics in such systems is a challenging task due to their complex nature associated with the multiple part types and alternate material transfer routings. This paper presents a decision support system capable of supporting shop-floor decision-making activities during the event of manufacturing disruptions by automatically adjusting both AGV and machine schedules in Flexible Manufacturing Systems (FMSs). The proposed system uses discrete event simulation (DES) models enhanced by the Internet-of-Things (IoT) enabled digital integration and employs a nonlinear mixed integer programming Genetic Algorithm (GA) to find near-optimal production schedules prioritising the just-in-time (JIT) material delivery performance and energy efficiency of the material transportation. The performance of the proposed system is tested on the Integrated Manufacturing and Logistics (IML) demonstrator at WMG, University of Warwick. The results showed that the developed system can find the near-optimal solutions for production schedules subjected to production anomalies in a negligible time, thereby supporting shop-floor decision-making activities effectively and rapidly

    Design & development of a simulation model to analyse scheduling rules in an FMS in a virtual manufacturing environment : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Manufacturing and Industrial Technology at Massey University

    Get PDF
    Due to the rapid changes in the needs of the customer for new products, the future manufacturing systems must cope with these changes. Hence, the need for the manufacturing systems to support these changes in the products with shorter lead times within a single manufacturing facility. The Virtual Manufacturing System (VMS) is one concept which can assist in meeting these demands. The VMS concept enables the manufacturing system designers to emulate and test the performance of the future manufacturing systems. This research has given an overview of the new concepts of Virtual Manufacturing Systems and Virtual Manufacturing in general. A Virtual Reality Software tool has been used to realise the VMS concept. A Virtual Manufacturing Environment representing a Flexible Manufacturing System (FMS) has been modelled. A simulation control language is employed for developing simulation control logics and decision making control logics for the development of the FMS model. The modelled FMS is implemented and tested through simulation experiments. The testing is done by analysing the traditional scheduling rules in a manufacturing facility. Average Machine Utilisation, Mean Flow Time, Average Queue Lengths and the System Production Rate are measured as the System Performance Measures for the evaluation of the scheduling rules. This research has identified that the Virtual Manufacturing Software is a powerful tool which can identify optimum configurations and highlight potential problems before a final and expensive manufacturing system is established physically

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    Design and development of a hybrid control system for flexible manufacturing : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Manufacturing and Industrial Technology at Massey University

    Get PDF
    Irregular Pagination MisnumberedFlexible Manufacturing Systems (FMS) appeared upon the manufacturing scene in the early 1970s, installations presently number in the thousands. However, many current installations in fact lack flexibility, do not operate in real-time and are prohibitively expensive. Therefore there are obvious benefits to be gained from making improvements to existing flexible manufacturing systems. Research conducted for this thesis focused on two major areas. The implementation of the FMS control system on a SCADA package and the development of an auction based scheduling system. This entailed the development of a hybrid control model composed of three distinct layers; factory, cell and intelligent entity. Key portions of both the factory and cell controllers were then implemented so as to create a minimal system. This has been completed to the point where the auction algorithm has been implemented and tested in an appropriate framework. In achieving the goals mentioned above a number of novel design concepts have been utilised. There are two which are most important, these are the use of low cost modules for the construction of a flexible co-operative manufacturing system, and the ability of this system to operate in a physically distributed area via a Local Area Network. Meaning it is inherently adaptable and resistant to failure. These novel design concepts were ingrained throughout the entire three layered control model. It is felt that this research has succeeded in demonstrating the possibility of implementing a FMS control system on a low cost SCADA package using low cost software and computing elements. The ability of the distributed, auction-based approach to operate successfully within this system, has also been demonstrated through simulation

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Autonomous guided vehicles (AGVs) are driverless material handling systems used for transportation of pallets and line side supply of materials to provide flexibility and agility in shop-floor logistics. Scheduling of shop-floor logistics in such systems is a challenging task due to their complex nature associated with the multiple part types and alternate material transfer routings. This paper presents a decision support system capable of supporting shop-floor decision-making activities during the event of manufacturing disruptions by automatically adjusting both AGV and machine schedules in Flexible Manufacturing Systems (FMSs). The proposed system uses discrete event simulation (DES) models enhanced by the Internet-of-Things (IoT) enabled digital integration and employs a nonlinear mixed integer programming Genetic Algorithm (GA) to find near-optimal production schedules prioritising the just-in-time (JIT) material delivery performance and energy efficiency of the material transportation. The performance of the proposed system is tested on the Integrated Manufacturing and Logistics (IML) demonstrator at WMG, University of Warwick. The results showed that the developed system can find the near-optimal solutions for production schedules subjected to production anomalies in a negligible time, thereby supporting shop-floor decision-making activities effectively and rapidly

    Survey on Additive Manufacturing, Cloud 3D Printing and Services

    Full text link
    Cloud Manufacturing (CM) is the concept of using manufacturing resources in a service oriented way over the Internet. Recent developments in Additive Manufacturing (AM) are making it possible to utilise resources ad-hoc as replacement for traditional manufacturing resources in case of spontaneous problems in the established manufacturing processes. In order to be of use in these scenarios the AM resources must adhere to a strict principle of transparency and service composition in adherence to the Cloud Computing (CC) paradigm. With this review we provide an overview over CM, AM and relevant domains as well as present the historical development of scientific research in these fields, starting from 2002. Part of this work is also a meta-review on the domain to further detail its development and structure
    • …
    corecore