12,998 research outputs found

    Life cycle assessment (LCA) applied to the process industry: a review

    Get PDF
    Purpose : Life cycle assessment (LCA) methodology is a well-established analytical method to quantify environmental impacts, which has been mainly applied to products. However, recent literature would suggest that it has also the potential as an analysis and design tool for processes, and stresses that one of the biggest challenges of this decade in the field of process systems engineering (PSE) is the development of tools for environmental considerations. Method : This article attempts to give an overview of the integration of LCA methodology in the context of industrial ecology, and focuses on the use of this methodology for environmental considerations concerning process design and optimization. Results : The review identifies that LCA is often used as a multi-objective optimization of processes: practitioners use LCA to obtain the inventory and inject the results into the optimization model. It also shows that most of the LCA studies undertaken on process analysis consider the unit processes as black boxes and build the inventory analysis on fixed operating conditions. Conclusions : The article highlights the interest to better assimilate PSE tools with LCA methodology, in order to produce a more detailed analysis. This will allow optimizing the influence of process operating conditions on environmental impacts and including detailed environmental results into process industry

    Characterization of beech wood pulp towards sustainable rapid prototyping

    Get PDF
    Wood has several advantages that are transferable to various derivates allowing the introduction of a sustainable material into the product lifecycle. The objective of this paper is to apply a design for manufacturing approach based on wood flour rapid prototyping, while associating the requirements of the ‘mass customisation’ in the implementation of a customised product. New collaborative software allows consumers to be involved in the design process. Prototyping processes allow direct manufacturing of products

    Industrial water management by multiobjective optimization: from individual to collective solution through eco-industrial parks.

    Get PDF
    Industrial water networks are designed in the first part by a multiobjective optimization strategy, where fresh water, regenerated water flow rates as well as the number of network connections (integer variables) are minimized. The problem is formulated as a Mixed-Integer Linear Programming problem (MILP) and solved by the ε-constraint method. The linearization of the problem is based on the necessary conditions of optimality defined by Savelski and Bagajewicz (2000). The approach is validated on a published example involving only one contaminant. In the second part the MILP strategy is implemented for designing an Eco-Industrial Park (EIP) involving three companies. Three scenarios are considered: EIP without regeneration unit, EIP where each company owns its regeneration unit and EIP where the three companies share regeneration unit(s). Three possible regeneration units can be chosen, and the MILP is solved under two kinds of conditions: limited or unlimited number of connections, same or different gains for each company. All these cases are compared according to the global equivalent cost expressed in fresh water and taking also into account the network complexity through the number of connections. The best EIP solution for the three companies can be determined

    Preparation, Proximate Composition and Culinary Properties of Yellow Alkaline Noodles from Wheat and Raw/Pregelatinized Gadung (Dioscorea Hispida Dennst) Composite Flours

    Get PDF
    The steady increase of wheat flour price and noodle consumptions has driven researchers to find substitutes for wheat flour in the noodle making process. In this work, yellow alkaline noodles were prepared from composite flours comprising wheat and raw/pregelatinized gadung (Dioscorea hispida Dennst) flours. The purpose of this work was to investigate the effect of composite flour compositions on the cooking properties (cooking yield, cooking loss and swelling index) of yellow alkaline noodle. In addition, the sensory test and nutrition content of the yellow alkaline noodle were also evaluated for further recommendation. The experimental results showed that a good quality yellow alkaline noodle can be prepared from composite flour containing 20% w/w raw gadung flour. The cooking yield, cooking loss and swelling index of this noodle were 10.32 g, 1.20 and 2.30, respectively. Another good quality yellow alkaline noodle can be made from composite flour containing 40% w/w pregelatinized gadung flour. This noodle had cooking yield 8.93 g, cooking loss 1.20, and swelling index of 1.88. The sensory evaluation suggested that although the color, aroma and firmness of the noodles were significantly different (p ≤ 0.05) from wheat flour noodle, but their flavor remained closely similar. The nutrition content of the noodles also satisfied the Indonesian National Standard for noodle. Therefore, it can be concluded that wheat and raw/pregelatinized gadung composite flours can be used to manufacture yellow alkaline noodle with good quality and suitable for functional food

    The value of flexibility for pulp mills investing in energy efficiency and future biorefinery concepts

    Get PDF
    Changing conditions in biomass and energy markets require the pulp and paper industry to improve energy efficiency and find new opportunities in biorefinery implementation. Considering the expected changes in the pulp mill environment and the variety of potential technology pathways, flexibility should be a strong advantage for pulp mills. In this context, flexibility is defined as the ability of the pulp mill to respond to changing conditions. The aim of this article is to show the potential value of flexibility in the planning of pulp mill energy and biorefinery projects and to demonstrate how this value can be incorporated into models for optimal strategic planning of such investments. The paper discusses the requirements on the optimization models in order to adequately capture the value of flexibility. It is suggested that key elements of the optimization model are multiple points in time where investment decisions can be made as well as multiple scenarios representing possible energy price changes over time. The use of a systematic optimization methodology that incorporates these model features is illustrated by a case study, which includes opportunities for district heating cooperation as well as for lignin extraction and valorization. A quantitative valuation of flexibility is provided for this case study. The study also demonstrates how optimal investment decisions for a pulp mill today are influenced by expected future changes in the markets for energy and bioproducts

    Demand response within the energy-for-water-nexus - A review. ESRI WP637, October 2019

    Get PDF
    A promising tool to achieve more flexibility within power systems is demand re-sponse (DR). End-users in many strands of industry have been subject to research up to now regarding the opportunities for implementing DR programmes. One sector that has received little attention from the literature so far, is wastewater treatment. However, case studies indicate that the potential for wastewater treatment plants to provide DR services might be significant. This review presents and categorises recent modelling approaches for industrial demand response as well as for the wastewater treatment plant operation. Furthermore, the main sources of flexibility from wastewater treatment plants are presented: a potential for variable electricity use in aeration, the time-shifting operation of pumps, the exploitation of built-in redundan-cy in the system and flexibility in the sludge processing. Although case studies con-note the potential for DR from individual WWTPs, no study acknowledges the en-dogeneity of energy prices which arises from a large-scale utilisation of DR. There-fore, an integrated energy systems approach is required to quantify system and market effects effectively

    Process integration in pulp and paper mills for energy and water reduction - A review

    Get PDF
    Process integration (including pinch analysis) is a holistic or systems approach to process design and optimisation, which considers the interactions and interdependences between individual unit operations or process elements. Large reductions in both energy and water use in pulp and paper mills has been demonstrated using process integration techniques. A review of the current process integration techniques for energy and water reduction, with a focus on application to the pulp and paper industry is presented in this paper. The concurrent application of heat integration and water/mass integration analysis is discussed. Particular focus is given to published case studies. The integration of biorefineries into existing mills and the energy and water use implications is also receiving much attention and this development is also reviewed

    Integrated network design for forest bioenergy value chain - decisions support system for the transformation of the Canadian forest industry

    Get PDF
    Les usines de bioénergie devraient jouer un rôle important dans la production d'énergie verte à partir de la biomasse forestière. Pour intégrer l'usine de bioénergie dans la chaîne d'approvisionnement forestière, l'industrie a besoin de nouveaux investissements ainsi que de la conception et de la gestion de la chaîne de valeur. D'un autre côté, les incertitudes associées aux nouveaux produits sur le marché peuvent ajouter des risques supplémentaires à un investissement aussi important dans la chaîne d'approvisionnement forestière instable. Par conséquent, l'objectif principal de cette thèse est d'étudier la conception du réseau de bioénergie forestière dans un contexte déterministe et stochastique. La première partie de la thèse propose une plate-forme expérimentale pour intégrer la conception et le pilotage de la chaîne de valeur puisque le nouveau design ne sera réalisable que s'il considère au préalable la planification. La plateforme a inclus plusieurs actions collaboratives entre tous les partenaires impliqués dans la chaîne d'approvisionnement. Cette plateforme est la base d’un nouvel outil éducatif appelé jeu de transport. Ensuite, la plate-forme a été utilisée pour concevoir un réseau optimisé de bioénergie forestière. La chaîne d'approvisionnement forestière de Terre-Neuve, composée de quatre acteurs majeurs de l’industrie forestière, a été considérée comme notre étude de cas. La rentabilité de l'ajout de nouvelles installations de bioénergie ainsi que de nouveaux terminaux dans plusieurs emplacements potentiels ont été évalués. Enfin, à la troisième partie de la thèse, nous repensons le réseau bioénergétique en tenant compte de l'incertitude de la demande et des prix de tous les produits finaux de la nouvelle chaîne de valeur. Plusieurs bioprocédés potentiels avec différentes technologies ont été évalués dans notre étude de cas. Pour fournir une solution tenant compte du risque, nous avons développé deux nouveaux modèles de gestion des risques. Les résultats dans les trois parties ont clairement démontré l'impact de la planification intégrée, des usines de bioénergie et de la collaboration sur l'amélioration de la performance de la chaîne d'approvisionnement forestière. En général, le travail accompli dans ce projet permettra une transformation en douceur de la chaîne d'approvisionnement forestière en tenant compte des risques d'investissement. En ce qui concerne les résultats obtenus grâce aux études de cas, nous croyons que la plateforme et les approches proposées dans cette thèse peuvent être considérées comme des outils novateurs et pratiques pour le problème de la conception des réseaux de bioénergie forestière.Bioenergy plants are expected to play an important role in green energy production from forestry biomass. To incorporate bioenergy plant in the forest supply chain, the industry requires new investments as well as new value chain design and management. On the other side, the uncertainties associated with demand and price of new products in the market may add risks to such large investment in current forest supply chain. Hence, the main objective of this thesis is to analyze and to propose new design of the forest bioenergy network in both a deterministic and a stochastic context. The first part of the thesis has proposed four optimization models for strategic, tactical and operational planning levels of the supply chain. The models have included several collaborative actions between all involved stakeholders of the supply chain. They have been integrated in a new educational tool called hierarchical transportation game. In the second part of the thesis, we have integrated the developed optimization models to propose an integrated value chain design and value chain management optimization model. This model has been used to analyze a forest bioenergy network in Newfoundland. Newfoundland forest supply chain comprising four major stakeholders was considered as our case study. The profitability of adding a new bioenergy plant as well as new terminals in several potential locations have been evaluated. Finally, in a third part of the thesis we have proposed the bioenergy network taking into account uncertainty on demand and price of all final products of a new value chain. Several potential bioprocesses with different technologies have been evaluated for our case study. To provide a risk-averse solution, we have proposed two risk management models. The results from the three parts of the thesis have demonstrated the impact of integrated planning, bioenergy plants and collaboration on improvement of forest value chain. In general, the work in this thesis can support an efficient transformation of the forest supply chain considering investment risks. The optimization models and approaches proposed in this thesis are novel and practical for the forest bioenergy network design problem

    Second-generation bioethanol from industrial wood waste of South American species

    Get PDF
    There is a global interest in replacing fossil fuels with renewable sources of energy. The present review evaluates the significance of South-American wood industrial wastes for bioethanol production. Four countries have been chosen for this review, i.e., Argentina, Brazil, Chile, and Uruguay, based on their current or potential forestry industry. It should be noted that although Brazil has a global bioethanol market share of 25%, its production is mainly first-generation bioethanol from sugarcane. The situation in the other countries is even worse, in spite of the fact that they have regulatory frameworks in place already allowing the substitution of a percentage of gasoline by ethanol. Pines and eucalyptus are the usually forested plants in these countries, and their industrial wastes, as chips and sawdust, could serve as promising raw materials to produce second-generation bioethanol in the context of a forest biorefinery. The process to convert woody biomass involves three stages: pretreatment, enzymatic saccharification, and fermentation. The operational conditions of the pretreatment method used are generally defined according to the physical and chemical characteristics of the raw materials and subsequently determine the characteristics of the treated substrates. This article also reviews and discusses the available pretreatment technologies for eucalyptus and pines applicable to South-American industrial wood wastes, their enzymatic hydrolysis yields, and the feasibility of implementing such processes in the mentioned countries in the frame of a biorefinery.Fil: Vallejos, María Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Kruyeniski, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Area, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentin

    ADAPTS: An Intelligent Sustainable Conceptual Framework for Engineering Projects

    Get PDF
    This paper presents a conceptual framework for the optimization of environmental sustainability in engineering projects, both for products and industrial facilities or processes. The main objective of this work is to propose a conceptual framework to help researchers to approach optimization under the criteria of sustainability of engineering projects, making use of current Machine Learning techniques. For the development of this conceptual framework, a bibliographic search has been carried out on the Web of Science. From the selected documents and through a hermeneutic procedure the texts have been analyzed and the conceptual framework has been carried out. A graphic representation pyramid shape is shown to clearly define the variables of the proposed conceptual framework and their relationships. The conceptual framework consists of 5 dimensions; its acronym is ADAPTS. In the base are: (1) the Application to which it is intended, (2) the available DAta, (3) the APproach under which it is operated, and (4) the machine learning Tool used. At the top of the pyramid, (5) the necessary Sensing. A study case is proposed to show its applicability. This work is part of a broader line of research, in terms of optimization under sustainability criteria.Telefónica Chair “Intelligence in Networks” of the University of Seville (Spain
    corecore