125 research outputs found

    HEIGHT MODEL INTEGRATION USING ALOS PALSAR, X SAR, SRTM C, AND ICESAT/GLAS

    Get PDF
    The scarcity of height models is one of the important issues in Indonesia. ALOS PALSAR, X SAR, SRTM C, and ICESAT/GLAS are free available global height models. Four data can be integrated the height models. Integration takes advantage of each characteristic data. The spatial resolution uses ALOS PALSAR. ICESAT/GLAS has a minimal height error because it is DTM. SAR has advantages of minimal error in the highland and need a low pass filter on the lowland. DSM uses X SAR and DEM from ALOS PALSAR. Characteristics and penetration of vegetation objects can be seen from the wavelength type of SAR data. This research aims to make height model integration in order to get the vertical accuracy better than vertical accuracy of global height models and minimum height error. The study area is located in Karo Regency. The first process is to crop the height models into Karo Regency, geoid undulation correction using EGM 2008. The next step is to detect pits and spires by using radius value 1000 m and depth +1.96σ (+5 m) with uncertainty 95,45%. Then generate HEM and height model integration. To know the accuracy of this height model, 100 reference points measured using GNSS, altimeter, and similar point observed on the height model integration are selected. The accuracy test covers RMSE, accuracy (z), and height difference test. The result of this study shows that the height model integration has a vertical accuracy in 1.14 m. This height model integration can be used for mapping scale 1: 10.0000

    PALSAR-2/ALOS-2 AND OLI/LANDSAT-8 DATA INTEGRATION FOR LAND USE AND LAND COVER MAPPING IN NORTHERN BRAZILIAN AMAZON

    Get PDF
    In northern Brazilian Amazon, the crops, savannahs and rainforests form a complex landscape where land use and land cover (LULC) mapping is difficult. Here, data from the Operational Land Imager (OLI)/Landsat-8 and Phased Array type L-band Synthetic Aperture Radar (PALSAR-2)/ALOS-2 were combined for mapping 17 LULC classes using Random Forest (RF) during the dry season. The potential thematic accuracy of each dataset was assessed and compared with results of the hybrid classification from both datasets. The results showed that the combination of PALSAR-2 HH/HV amplitudes with the reflectance of the six OLI bands produced an overall accuracy of 83% and a Kappa of 0.81, which represented an improvement of 6% in relation to the RF classification derived solely from OLI data. The RF models using OLI multispectral metrics performed better than RF models using PALSAR-2 L-band dual polarization attributes. However, the major contribution of PALSAR-2 in the savannahs was to discriminate low biomass classes such as savannah grassland and wooded savannah

    Geoscience and remote sensing on horticulture as support for management and planning

    Get PDF
    The importance of horticulture around the large cities, called green belt (GB), or proximity food production area is related to its contribution to the provision of food as well as its role on social, cultural and ecological aspects. Geoscience and Remote sensing (GRS) are tools that should aid in gathering and updating the information to develop science-based management plans of this areas. Recently, the improvement in terms of spatial, temporal and radiometric resolutions has changed the performance and the approach to the horticulture remote sensing. In this work, we make a brief review on the literature exploring the use of GRS techniques in horticulture, and future trends in order to exploit the available techniques for efficient crop management in the way to improve territorial planning and management. Specifically we found a lack of academic production in this area. In addition we examine the importance of this landscape areas from different points of view (food security, health, ecology, etc.). A systematic revision of published studies on remote sensing on horticulture including different platforms, sensors and methodologies are briefly presented. Finally some aspect related with future trends are discussed.EEA ManfrediFil: Marinelli, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); ArgentinaFil: Marinelli, María Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Agencia de Extensión Rural Córdoba; ArgentinaFil: Marinelli, María Victoria. Comisión Nacional de Actividades Espaciales (CONAE). Instituto de altos estudios espaciales "Mario Gulich"; ArgentinaFil: Marinelli, María Victoria. Universidad Nacional de Córdoba. Instituto de altos estudios espaciales "Mario Gulich"; ArgentinaFil: Scavuzzo, Carlos Matías. Universidad Nacional de Córdoba Facultad de Ciencias Médicas. Escuela de Nutrición; ArgentinaFil: Giobellina, Beatriz Liliana. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Observatorio de Agricultura Urbana, Periurbana y Agroecología (O-AUPA); ArgentinaFil: Scavuzzo, Carlos Marcelo. Comisión Nacional de Actividades Espaciales (CONAE); Argentin

    Geoscience and Remote Sensing on Horticulture as Support for Management and Planning

    Get PDF
    The importance of horticulture around the large cities, called green belt (GB), or proximity food production area is related to its contribution to the provision of food as well as its role on social, cultural and ecological aspects. Geoscience and Remote sensing (GRS) are tools that should aid in gathering and updating the information to develop science-based management plans of this areas. Recently, the improvement in terms of spatial, temporal and radiometric resolutions has changed the performance and the approach to the horticulture remote sensing. In this work, we make a brief review on the literature exploring the use of GRS techniques in horticulture, and future trends in order to exploit the available techniques for efficient crop management in the way to improve territorial planning and management. Specifically we found a lack of academic production in this area. In addition we examine the importance of this landscape areas from different points of view (food security, health, ecology, etc.). A systematic revision of published studies on remote sensing on horticulture including different platforms, sensors and methodologies are briefly presented. Finally some aspect related with future trends are discussed.Fil: Marinelli, María Victoria. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Scavuzzo, Matías. Universidad Nacional de Córdoba. Facultad de Medicina. Escuela de Nutrición; ArgentinaFil: Giobellina, Beatriz. Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Cordoba. Estacion Experimental Agropecuaria Manfredi. Agencia de Extension Rural Cordoba.; ArgentinaFil: Scavuzzo, Marcelo. Comision Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentin

    Earth resources: A continuing bibliography with indexes, issue 50

    Get PDF
    This bibliography lists 523 reports, articles and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Mapping Mangrove Extent and Change: A Globally Applicable Approach

    Get PDF
    This study demonstrates a globally applicable method for monitoring mangrove forest extent at high spatial resolution. A 2010 mangrove baseline was classified for 16 study areas using a combination of ALOS PALSAR and Landsat composite imagery within a random forests classifier. A novel map-to-image change method was used to detect annual and decadal changes in extent using ALOS PALSAR/JERS-1 imagery. The map-to-image method presented makes fewer assumptions of the data than existing methods, is less sensitive to variation between scenes due to environmental factors (e.g., tide or soil moisture) and is able to automatically identify a change threshold. Change maps were derived from the 2010 baseline to 1996 using JERS-1 SAR and to 2007, 2008 and 2009 using ALOS PALSAR. This study demonstrated results for 16 known hotspots of mangrove change distributed globally, with a total mangrove area of 2,529,760 ha. The method was demonstrated to have accuracies consistently in excess of 90% (overall accuracy: 92.293.3%, kappa: 0.86) for mapping baseline extent. The accuracies of the change maps were more variable and were dependent upon the time period between images and number of change features. Total change from 1996 to 2010 was 204,850 ha (127,990 ha gain, 76,860 ha loss), with the highest gains observed in French Guiana (15,570 ha) and the highest losses observed in East Kalimantan, Indonesia (23,003 ha). Changes in mangrove extent were the consequence of both natural and anthropogenic drivers, yielding net increases or decreases in extent dependent upon the study site. These updated maps are of importance to the mangrove research community, particularly as the continual updating of the baseline with currently available and anticipated spaceborne sensors. It is recommended that mangrove baselines are updated on at least a 5-year interval to suit the requirements of policy makers

    Delineating smallholder maize farms from Sentinel-1 coupled with Sentinel-2 data using machine learning

    Get PDF
    Rural communities rely on smallholder maize farms for subsistence agriculture, the main driver of local economic activity and food security. However, their planted area estimates are unknown in most developing countries. This study explores the use of Sentinel-1 and Sentinel-2 data to map smallholder maize farms. The random forest (RF), support vector (SVM) machine learning algorithms and model stacking (ST) were applied. Results show that the classification of combined Sentinel-1 and Sentinel-2 data improved the RF, SVM and ST algorithms by 24.2%, 8.7%, and 9.1%, respectively, compared to the classification of Sentinel-1 data individually. Similarities in the estimated areas (7001.35 ± 1.2 ha for RF, 7926.03 ± 0.7 ha for SVM and 7099.59 ± 0.8 ha for ST) show that machine learning can estimate smallholder maize areas with high accuracies. The study concludes that the single-date Sentinel-1 data were insufficient to map smallholder maize farms. However, single-date Sentinel-1 combined with Sentinel-2 data were sufficient in mapping smallholder farms. These results can be used to support the generation and validation of national crop statistics, thus contributing to food security.The Agricultural Research Council, the National Research Foundation and the University of Pretoria.https://www.mdpi.com/journal/sustainabilitydm2022Geography, Geoinformatics and Meteorolog

    Satellite Earth observation to support sustainable rural development

    Get PDF
    Traditional survey and census data are not sufficient for measuring poverty and progress towards achieving the Sustainable Development Goals (SDGs). Satellite Earth Observation (EO) is a novel data source that has considerable potential to augment data for sustainable rural development. To realise the full potential of EO data as a proxy for socioeconomic conditions, end-users – both expert and non-expert – must be able to make the right decisions about what data to use and how to use it. In this review, we present an outline of what needs to be done to operationalise, and increase confidence in, EO data for sustainable rural development and monitoring the socioeconomic targets of the SDGs. We find that most approaches developed so far operate at a single spatial scale, for a single point in time, and proxy only one socioeconomic metric. Moreover, research has been geographically focused across three main regions: West Africa, East Africa, and the Indian Subcontinent, which underscores a need to conduct research into the utility of EO for monitoring poverty across more regions, to identify transferable EO proxies and methods. A variety of data from different EO platforms have been integrated into such analyses, with Landsat and MODIS datasets proving to be the most utilised to-date. Meanwhile, there is an apparent underutilisation of fusion capabilities with disparate datasets, in terms of (i) other EO datasets such as RADAR data, and (ii) non-traditional datasets such as geospatial population layers. We identify five key areas requiring further development to encourage operational uptake of EO for proxying socioeconomic conditions and conclude by linking these with the technical and implementational challenges identified across the review to make explicit recommendations. This review contributes towards developing transparent data systems to assemble the high-quality data required to monitor socioeconomic conditions across rural spaces at fine temporal and spatial scales

    Assessment of a potential use of satellite optical and radar data for the identification of agriculture land types

    Get PDF

    Early mapping of industrial tomato in Central and Southern Italy with Sentinel 2, aerial and RapidEye additional data

    Get PDF
    Timely crop information, i.e. well before harvesting time and at first stages of crop development, can benefit farmers and producer organizations. The current case study documents the procedure to deliver early data on planted tomato to users, showing the potential of Sentinel 2 to map tomato at the very beginning of the crop season, which is a challenging task. Using satellite data, integrated with ground and aerial data, an initial estimate of area planted with tomato and early tomato maps were generated in seven main production areas in Italy. Estimates of the amount of area planted with tomato provided similar results either when derived from field surveys or from remote sensing-based classification. Tomato early maps showed a producer accuracy > 80% in seven cases out of nine, and a user accuracy > 80% in five cases out of nine, with differences attributed to the varying agricultural characteristics and environmental heterogeneity of the study areas. The additional use of aerial data improved producer accuracy moderately. The ability to identify abrupt growth changes, such as those caused by natural hazards, was also analysed: Sentinel 2 detected significant changes in tomato growth between a hailstorm-affected area and a control area. The study suggests that Sentinel 2, with enhanced spectral capabilities and open data policy, represents very valuable data, allowing crop monitoring at an early development stage
    • …
    corecore