29 research outputs found

    From small to large baseline multiview stereo : dealing with blur, clutter and occlusions

    Get PDF
    This thesis addresses the problem of reconstructing the three-dimensional (3D) digital model of a scene from a collection of two-dimensional (2D) images taken from it. To address this fundamental computer vision problem, we propose three algorithms. They are the main contributions of this thesis. First, we solve multiview stereo with the o -axis aperture camera. This system has a very small baseline as images are captured from viewpoints close to each other. The key idea is to change the size or the 3D location of the aperture of the camera so as to extract selected portions of the scene. Our imaging model takes both defocus and stereo information into account and allows to solve shape reconstruction and image restoration in one go. The o -axis aperture camera can be used in a small-scale space where the camera motion is constrained by the surrounding environment, such as in 3D endoscopy. Second, to solve multiview stereo with large baseline, we present a framework that poses the problem of recovering a 3D surface in the scene as a regularized minimal partition problem of a visibility function. The formulation is convex and hence guarantees that the solution converges to the global minimum. Our formulation is robust to view-varying extensive occlusions, clutter and image noise. At any stage during the estimation process the method does not rely on the visual hull, 2D silhouettes, approximate depth maps, or knowing which views are dependent(i.e., overlapping) and which are independent( i.e., non overlapping). Furthermore, the degenerate solution, the null surface, is not included as a global solution in this formulation. One limitation of this algorithm is that its computation complexity grows with the number of views that we combine simultaneously. To address this limitation, we propose a third formulation. In this formulation, the visibility functions are integrated within a narrow band around the estimated surface by setting weights to each point along optical rays. This thesis presents technical descriptions for each algorithm and detailed analyses to show how these algorithms improve existing reconstruction techniques

    Self-correction of 3D reconstruction from multi-view stereo images

    Get PDF
    We present a self-correction approach to improving the 3D reconstruction of a multi-view 3D photogrammetry system. The self-correction approach has been able to repair the reconstructed 3D surface damaged by depth discontinuities. Due to self-occlusion, multi-view range images have to be acquired and integrated into a watertight nonredundant mesh model in order to cover the extended surface of an imaged object. The integrated surface often suffers from “dent” artifacts produced by depth discontinuities in the multi-view range images. In this paper we propose a novel approach to correcting the 3D integrated surface such that the dent artifacts can be repaired automatically. We show examples of 3D reconstruction to demonstrate the improvement that can be achieved by the self-correction approach. This self-correction approach can be extended to integrate range images obtained from alternative range capture devices

    Semantic 3D Reconstruction with Finite Element Bases

    Full text link
    We propose a novel framework for the discretisation of multi-label problems on arbitrary, continuous domains. Our work bridges the gap between general FEM discretisations, and labeling problems that arise in a variety of computer vision tasks, including for instance those derived from the generalised Potts model. Starting from the popular formulation of labeling as a convex relaxation by functional lifting, we show that FEM discretisation is valid for the most general case, where the regulariser is anisotropic and non-metric. While our findings are generic and applicable to different vision problems, we demonstrate their practical implementation in the context of semantic 3D reconstruction, where such regularisers have proved particularly beneficial. The proposed FEM approach leads to a smaller memory footprint as well as faster computation, and it constitutes a very simple way to enable variable, adaptive resolution within the same model

    Combinatorial Solutions for Shape Optimization in Computer Vision

    Get PDF
    This thesis aims at solving so-called shape optimization problems, i.e. problems where the shape of some real-world entity is sought, by applying combinatorial algorithms. I present several advances in this field, all of them based on energy minimization. The addressed problems will become more intricate in the course of the thesis, starting from problems that are solved globally, then turning to problems where so far no global solutions are known. The first two chapters treat segmentation problems where the considered grouping criterion is directly derived from the image data. That is, the respective data terms do not involve any parameters to estimate. These problems will be solved globally. The first of these chapters treats the problem of unsupervised image segmentation where apart from the image there is no other user input. Here I will focus on a contour-based method and show how to integrate curvature regularity into a ratio-based optimization framework. The arising optimization problem is reduced to optimizing over the cycles in a product graph. This problem can be solved globally in polynomial, effectively linear time. As a consequence, the method does not depend on initialization and translational invariance is achieved. This is joint work with Daniel Cremers and Simon Masnou. I will then proceed to the integration of shape knowledge into the framework, while keeping translational invariance. This problem is again reduced to cycle-finding in a product graph. Being based on the alignment of shape points, the method actually uses a more sophisticated shape measure than most local approaches and still provides global optima. It readily extends to tracking problems and allows to solve some of them in real-time. I will present an extension to highly deformable shape models which can be included in the global optimization framework. This method simultaneously allows to decompose a shape into a set of deformable parts, based only on the input images. This is joint work with Daniel Cremers. In the second part segmentation is combined with so-called correspondence problems, i.e. the underlying grouping criterion is now based on correspondences that have to be inferred simultaneously. That is, in addition to inferring the shapes of objects, one now also tries to put into correspondence the points in several images. The arising problems become more intricate and are no longer optimized globally. This part is divided into two chapters. The first chapter treats the topic of real-time motion segmentation where objects are identified based on the observations that the respective points in the video will move coherently. Rather than pre-estimating motion, a single energy functional is minimized via alternating optimization. The main novelty lies in the real-time capability, which is achieved by exploiting a fast combinatorial segmentation algorithm. The results are furthermore improved by employing a probabilistic data term. This is joint work with Daniel Cremers. The final chapter presents a method for high resolution motion layer decomposition and was developed in combination with Daniel Cremers and Thomas Pock. Layer decomposition methods support the notion of a scene model, which allows to model occlusion and enforce temporal consistency. The contributions are twofold: from a practical point of view the proposed method allows to recover fine-detailed layer images by minimizing a single energy. This is achieved by integrating a super-resolution method into the layer decomposition framework. From a theoretical viewpoint the proposed method introduces layer-based regularity terms as well as a graph cut-based scheme to solve for the layer domains. The latter is combined with powerful continuous convex optimization techniques into an alternating minimization scheme. Lastly I want to mention that a significant part of this thesis is devoted to the recent trend of exploiting parallel architectures, in particular graphics cards: many combinatorial algorithms are easily parallelized. In Chapter 3 we will see a case where the standard algorithm is hard to parallelize, but easy for the respective problem instances

    Parametric region-based foreround segmentation in planar and multi-view sequences

    Get PDF
    Foreground segmentation in video sequences is an important area of the image processing that attracts great interest among the scientist community, since it makes possible the detection of the objects that appear in the sequences under analysis, and allows us to achieve a correct performance of high level applications which use foreground segmentation as an initial step. The current Ph.D. thesis entitled Parametric Region-Based Foreground Segmentation in Planar and Multi-View Sequences details, in the following pages, the research work carried out within this eld. In this investigation, we propose to use parametric probabilistic models at pixel-wise and region level in order to model the di erent classes that are involved in the classi cation process of the di erent regions of the image: foreground, background and, in some sequences, shadow. The development is presented in the following chapters as a generalization of the techniques proposed for objects segmentation in 2D planar sequences to 3D multi-view environment, where we establish a cooperative relationship between all the sensors that are recording the scene. Hence, di erent scenarios have been analyzed in this thesis in order to improve the foreground segmentation techniques: In the first part of this research, we present segmentation methods appropriate for 2D planar scenarios. We start dealing with foreground segmentation in static camera sequences, where a system that combines pixel-wise background model with region-based foreground and shadow models is proposed in a Bayesian classi cation framework. The research continues with the application of this method to moving camera scenarios, where the Bayesian framework is developed between foreground and background classes, both characterized with region-based models, in order to obtain a robust foreground segmentation for this kind of sequences. The second stage of the research is devoted to apply these 2D techniques to multi-view acquisition setups, where several cameras are recording the scene at the same time. At the beginning of this section, we propose a foreground segmentation system for sequences recorded by means of color and depth sensors, which combines di erent probabilistic models created for the background and foreground classes in each one of the views, by taking into account the reliability that each sensor presents. The investigation goes ahead by proposing foreground segregation methods for multi-view smart room scenarios. In these sections, we design two systems where foreground segmentation and 3D reconstruction are combined in order to improve the results of each process. The proposals end with the presentation of a multi-view segmentation system where a foreground probabilistic model is proposed in the 3D space to gather all the object information that appears in the views. The results presented in each one of the proposals show that the foreground segmentation and also the 3D reconstruction can be improved, in these scenarios, by using parametric probabilistic models for modeling the objects to segment, thus introducing the information of the object in a Bayesian classi cation framework.La segmentaci on de objetos de primer plano en secuencias de v deo es una importante area del procesado de imagen que despierta gran inter es por parte de la comunidad cient ca, ya que posibilita la detecci on de objetos que aparecen en las diferentes secuencias en an alisis, y permite el buen funcionamiento de aplicaciones de alto nivel que utilizan esta segmentaci on obtenida como par ametro de entrada. La presente tesis doctoral titulada Parametric Region-Based Foreground Segmentation in Planar and Multi-View Sequences detalla, en las p aginas que siguen, el trabajo de investigaci on desarrollado en este campo. En esta investigaci on se propone utilizar modelos probabil sticos param etricos a nivel de p xel y a nivel de regi on para modelar las diferentes clases que participan en la clasi caci on de las regiones de la imagen: primer plano, fondo y en seg un que secuencias, las regiones de sombra. El desarrollo se presenta en los cap tulos que siguen como una generalizaci on de t ecnicas propuestas para la segmentaci on de objetos en secuencias 2D mono-c amara, al entorno 3D multi-c amara, donde se establece la cooperaci on de los diferentes sensores que participan en la grabaci on de la escena. De esta manera, diferentes escenarios han sido estudiados con el objetivo de mejorar las t ecnicas de segmentaci on para cada uno de ellos: En la primera parte de la investigaci on, se presentan m etodos de segmentaci on para escenarios monoc amara. Concretamente, se comienza tratando la segmentaci on de primer plano para c amara est atica, donde se propone un sistema completo basado en la clasi caci on Bayesiana entre el modelo a nivel de p xel de nido para modelar el fondo, y los modelos a nivel de regi on creados para modelar los objetos de primer plano y la sombra que cada uno de ellos proyecta. La investigaci on prosigue con la aplicaci on de este m etodo a secuencias grabadas mediante c amara en movimiento, donde la clasi caci on Bayesiana se plantea entre las clases de fondo y primer plano, ambas caracterizadas con modelos a nivel de regi on, con el objetivo de obtener una segmentaci on robusta para este tipo de secuencias. La segunda parte de la investigaci on, se centra en la aplicaci on de estas t ecnicas mono-c amara a entornos multi-vista, donde varias c amaras graban conjuntamente la misma escena. Al inicio de dicho apartado, se propone una segmentaci on de primer plano en secuencias donde se combina una c amara de color con una c amara de profundidad en una clasi caci on que combina los diferentes modelos probabil sticos creados para el fondo y el primer plano en cada c amara, a partir de la fi abilidad que presenta cada sensor. La investigaci on prosigue proponiendo m etodos de segmentaci on de primer plano para entornos multi-vista en salas inteligentes. En estos apartados se diseñan dos sistemas donde la segmentaci on de primer plano y la reconstrucci on 3D se combinan para mejorar los resultados de cada uno de estos procesos. Las propuestas fi nalizan con la presentaci on de un sistema de segmentaci on multi-c amara donde se centraliza la informaci on del objeto a segmentar mediante el diseño de un modelo probabil stico 3D. Los resultados presentados en cada uno de los sistemas, demuestran que la segmentacion de primer plano y la reconstrucci on 3D pueden verse mejorados en estos escenarios mediante el uso de modelos probabilisticos param etricos para modelar los objetos a segmentar, introduciendo as la informaci on disponible del objeto en un marco de clasi caci on Bayesiano
    corecore