21,177 research outputs found

    A Review on Expert System Applications in Power Plants

    Get PDF
    The control and monitoring of power generation plants is being complicated day by day, with the increase size and capacity of equipments involved in power generation process. This calls for the presence of experienced and well trained operators for decision making and management of various plant related activities. Scarcity of well trained and experienced plant operators is one of the major problems faced by modern power industry. Application of artificial intelligence techniques, especially expert systems whose main characteristics is to simulate expert plant operator’s actions is one of the actively researched areas in the field of plant automation. This paper presents an overview of various expert system applications in power generation plants. It points out technological advancement of expert system technology and its integration with various types of modern techniques such as fuzzy, neural network, machine vision and data acquisition systems. Expert system can significantly reduce the work load on plant operators and experts, and act as an expert for plant fault diagnosis and maintenance. Various other applications include data processing, alarm reduction, schedule optimisation, operator training and evaluation. The review point out that integration of modern techniques such as neural network, fuzzy, machine vision, data base, simulators etc. with conventional rule based methodologies have added greater dimensions to problem solving capabilities of an expert system.DOI:http://dx.doi.org/10.11591/ijece.v4i1.502

    Hydroelectric power plant management relying on neural networks and expert system integration

    Get PDF
    The use of Neural Networks (NN) is a novel approach that can help in taking decisions when integrated in a more general system, in particular with expert systems. In this paper, an architecture for the management of hydroelectric power plants is introduced. This relies on monitoring a large number of signals, representing the technical parameters of the real plant. The general architecture is composed of an Expert System and two NN modules: Acoustic Prediction (NNAP) and Predictive Maintenance (NNPM). The NNAP is based on Kohonen Learning Vector Quantization (LVQ) Networks in order to distinguish the sounds emitted by electricity-generating machine groups. The NNPM uses an ART-MAP to identify different situations from the plant state variables, in order to prevent future malfunctions. In addition, a special process to generate a complete training set has been designed for the ART-MAP module. This process has been developed to deal with the absence of data about abnormal plant situations, and is based on neural nets trained with the backpropagation algorithm.Publicad

    Monitoring systems for managing natural resources: economics, indicators and environmental externalities in a Costa Rican watershed

    Get PDF
    The worsening degradation of natural resources urgently requires the adoption of more sustainable management practices. This need has led to growing interest and investment in monitoring systems for tracking the condition of natural resources. This study is concerned with the design of monitoring systems that have direct relevance for the management of natural resources. We call these Policy Relevant Monitoring Systems (PRMS). Such systems have several key characteristics. They provide: a) a decision framework for selecting resource problems to monitor that offer potentially large social payoffs relative to the costs of monitoring, b) timely, including early warning information on emerging problems, c) a means of identifying the causes of an emerging problem, d) an analytical framework for identifying options for corrective action, e) an institutional framework for achieving ownership among key stakeholders (the resource users and those affected by the resource use) and agreement about emerging problems, the corrective actions to take, and effective implementation, and f) a built-in mechanism for learning from past experience to improve the performance of the monitoring system over time. The approach is developed and illustrated through detailed examination of the Arenal-Tempisque watershed in Costa Rica. This watershed exhibits classic multiple user and externality problems: deforestation by dairy and cattle farmers in the upper watershed leads to soil erosion and siltation of the various reservoirs that feed an important hydro-electric power generation system, and agro-chemical use by irrigated farmers has adverse impacts on a highly valued wetlands park and on wildlife and fishing in the lower reaches of the watershed.Natural resources., Environmental degradation., Costa Rica, Watershed management.,

    Security risk assessment and protection in the chemical and process industry

    Get PDF
    This article describes a security risk assessment and protection methodology that was developed for use in the chemical- and process industry in Belgium. The approach of the method follows a risk-based approach that follows desing principles for chemical safety. That approach is beneficial for workers in the chemical industry because they recognize the steps in this model from familiar safety models .The model combines the rings-of-protection approach with generic security practices including: management and procedures, security technology (e.g. CCTV, fences, and access control), and human interactions (pro-active as well as re-active). The method is illustrated in a case-study where a practical protection plan was developed for an existing chemical company. This chapter demonstrates that the method is useful for similar chemical- and process industrial activities far beyond the Belgian borders, as well as for cross-industrial security protection. This chapter offers an insight into how the chemical sector protects itself on the one hand, and an insight into how security risk management can be practiced on the other hand

    Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment

    Get PDF
    In the last decade, integrated logistics has become an important challenge in the development of wireless communication, identification and sensing technology, due to the growing complexity of logistics processes and the increasing demand for adapting systems to new requirements. The advancement of wireless technology provides a wide range of options for the maritime container terminals. Electronic devices employed in container terminals reduce the manual effort, facilitating timely information flow and enhancing control and quality of service and decision made. In this paper, we examine the technology that can be used to support integration in harbor's logistics. In the literature, most systems have been developed to address specific needs of particular harbors, but a systematic study is missing. The purpose is to provide an overview to the reader about which technology of integrated logistics can be implemented and what remains to be addressed in the future

    Concepts for design of an energy management system incorporating dispersed storage and generation

    Get PDF
    New forms of generation based on renewable resources must be managed as part of existing power systems in order to be utilized with maximum effectiveness. Many of these generators are by their very nature dispersed or small, so that they will be connected to the distribution part of the power system. This situation poses new questions of control and protection, and the intermittent nature of some of the energy sources poses problems of scheduling and dispatch. Under the assumption that the general objectives of energy management will remain unchanged, the impact of dispersed storage and generation on some of the specific functions of power system control and its hardware are discussed

    Failure mode prediction and energy forecasting of PV plants to assist dynamic maintenance tasks by ANN based models

    Get PDF
    In the field of renewable energy, reliability analysis techniques combining the operating time of the system with the observation of operational and environmental conditions, are gaining importance over time. In this paper, reliability models are adapted to incorporate monitoring data on operating assets, as well as information on their environmental conditions, in their calculations. To that end, a logical decision tool based on two artificial neural networks models is presented. This tool allows updating assets reliability analysis according to changes in operational and/or environmental conditions. The proposed tool could easily be automated within a supervisory control and data acquisition system, where reference values and corresponding warnings and alarms could be now dynamically generated using the tool. Thanks to this capability, on-line diagnosis and/or potential asset degradation prediction can be certainly improved. Reliability models in the tool presented are developed according to the available amount of failure data and are used for early detection of degradation in energy production due to power inverter and solar trackers functional failures. Another capability of the tool presented in the paper is to assess the economic risk associated with the system under existing conditions and for a certain period of time. This information can then also be used to trigger preventive maintenance activities

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems
    corecore