2,708 research outputs found

    Recent Advances in Printed Capacitive Sensors

    Get PDF
    In this review paper, we summarize the latest advances in the field of capacitive sensors fabricated by printing techniques. We first explain the main technologies used in printed electronics, pointing out their features and uses, and discuss their advantages and drawbacks. Then, we review the main types of capacitive sensors manufactured with different materials and techniques from physical to chemical detection, detailing the main substrates and additives utilized, as well as the measured ranges. The paper concludes with a short notice on status and perspectives in the field.H2020-MSCA-IF-2017-794885-SELFSEN

    Flexible stretchable electronics for sport and wellbeing applications

    Get PDF
    Wearable electronics are becoming increasingly widespread in modern society. Though these devices are intended to be worn, integrated into clothing and other everyday objects, the technologies and processes used to manufacture them is no different than those that manufacture laptops and mobile phones. Many of these devices are intended to monitor the user’s health, activity and general wellbeing, within clinical, recreational and assistive environments. Consequently, the inherent incompatibility of these rigid devices with the soft, elastic structure of the human body can in some cases can be uncomfortable and inconvenient for everyday life. For devices to take the step from a ‘wearable’ to an ‘invisible’, a drastic rethinking of electronics manufacturing is required.The fundamental aim of this research is to establish parameters of usefulness and an array of materials with complimentary processes that would assist in transitioning devices to long term almost invisible items that can assist in improving the health of the wearer. In order to approach this problem, a novel architecture was devised that utilised PDMS as a substrate and microfluid channels of Galinstan liquid alloy for interconnects. CO2 laser machining was investigated as a means of creating channels and vias on PDMS substrates. Trace speeds and laser power outputs were investigated in order to find an optimal combination. The results displayed upper limits for power densities; where surpassing this limit resulted in poor repeatability and surface finish. It was found that there was an optimal set of trace speeds that ranged from approximately 120mm/s to 190mm/s that resulted in the most reliable and repeatable performance. Due to the complex nature of a materials variable energy absorption properties, it is not possible to quantify a single optimal parameter set.To understand the performance of these devices in situ, finite element analysis was employed to model deformations that such a device could experience. The aims here were to investigate the bond strength required to prevent delamination, between the silicon-PDMS and PDMS-PDMS bonds, in addition to the stress applied to the silicone die during these deformations. Based upon the applied loads the required bond strengths would need to be at least ~65kPa to maintain PDMS-PDMS adhesion during these tests, while stress on the silicone-PDMS adhesion required an expected v higher ~160kPa, both of which are within the reach of existing bonding techniques that are capable of withstanding a pressure of ~600kPa before failure occurs. Stress on the silicon die did not exceed ~7.8 MPa during simulation, which is well below the fracture stress.By developing knowledge about how various components of such a system will respond during use and under stress, it allows future engineers to make informed design decisions and develop better more resilient products.</div

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    Self-sensing cellulose structures with design-controlled stiffness

    Get PDF
    Robots are often used for sensing and sampling in natural environments. Within this area, soft robots have become increasingly popular for these tasks because their mechanical compliance makes them safer to interact with. Unfortunately, if these robots break while working in vulnerable environments, they create potentially hazardous waste. Consequently, the development of compliant, biodegradable structures for soft, eco-robots is a relevant research area that we explore here. Cellulose is one of the most abundant biodegradable materials on earth, but it is naturally very stiff, which makes it difficult to use in soft robots. Here, we look at both biologically and kirigami inspired structures that can be used to reduce the stiffness of cellulose based parts for soft robots up to a factor of 19 000. To demonstrate this, we build a compliant force and displacement sensing structure from microfibrillated cellulose. We also describe a novel manufacturing technique for these structures, provide mechanical models that allow designers to specify their stiffness, and conclude with a description of our structure's performance
    • …
    corecore