1,985 research outputs found

    Close-Range Sensing and Data Fusion for Built Heritage Inspection and Monitoring - A Review

    Get PDF
    Built cultural heritage is under constant threat due to environmental pressures, anthropogenic damages, and interventions. Understanding the preservation state of monuments and historical structures, and the factors that alter their architectural and structural characteristics through time, is crucial for ensuring their protection. Therefore, inspection and monitoring techniques are essential for heritage preservation, as they enable knowledge about the altering factors that put built cultural heritage at risk, by recording their immediate effects on monuments and historic structures. Nondestructive evaluations with close-range sensing techniques play a crucial role in monitoring. However, data recorded by different sensors are frequently processed separately, which hinders integrated use, visualization, and interpretation. This article’s aim is twofold: i) to present an overview of close-range sensing techniques frequently applied to evaluate built heritage conditions, and ii) to review the progress made regarding the fusion of multi-sensor data recorded by them. Particular emphasis is given to the integration of data from metric surveying and from recording techniques that are traditionally non-metric. The article attempts to shed light on the problems of the individual and integrated use of image-based modeling, laser scanning, thermography, multispectral imaging, ground penetrating radar, and ultrasonic testing, giving heritage practitioners a point of reference for the successful implementation of multidisciplinary approaches for built cultural heritage scientific investigations

    3D INTERPRETATION AND FUSION OF MULTIDISCIPLINARY DATA FOR HERITAGE SCIENCE: A REVIEW

    Get PDF
    Activities related to the protection of tangible heritage require extensive multidisciplinary documentation. The various raw data that occur have been oftentimes been processed, visualized and evaluated separately leading to aggregations of unassociated information of varying data types. In the direction of adopting complete approaches towards more effective decision making, the interpretation and fusion of these data in three dimensions, inserting topological information is deemed necessary. The present study addresses the achieved level of three-dimensional interpretation and fusion with geometric models of data originating from different fields, by providing an extensive review of the relevant literature. Additionally, it briefly discusses perspectives on techniques that could potentially be integrated with point clouds or models

    Remote sensing and data fusion of cultural and physical landscapes

    Get PDF
    This dissertation is written as part of the three-article option offered by the Geography Department at UNC Greensboro. Each article addresses specific research issues within Remote Sensing, Photogrammetry, and three-dimensional modeling related structural and subsurface remote sensing of historic cultural landscapes. The articles submitted in this dissertation are both separate study sites and research questions, but the unifying theme of geographic research methods applies throughout. The first article is titled Terrestrial Lidar and GPR Investigations into the Third Line of Battle at Guilford Courthouse National Military Park, Guilford County, North Carolina is published in the book Digital Methods and Remote Sensing in Archaeology: Archaeology in the Age of Sensing. Forte, Maurizio, Campana, Stefano R.L. (Eds.) 2016. The results of the research demonstrate the successful exportation of GPR data into three-dimensional point clouds. Subsequently, the converted GPR points in conjunction with the TLS were explored to aid in the identification of the colonial subsurface. The second article submitted for consideration is titled “Three-Dimensional Modeling using Terrestrial LiDAR, Unmanned Aerial Vehicles, and Digital Cameras at House in the Horseshoe State Historic Site, Sanford, North Carolina.” There are two different research components to this study, modeling a structure and the landscape. The structure modeling section compares three different remote sensing approaches to the capture and three-dimensional model creation of a historic building. A detailed comparison is made between the photogrammetric models generated from digital camera photography, a terrestrial laser scanner (TLS) and an unmanned aerial vehicle (UAS). The final article, “Geophysical Investigations at the Harper House Bentonville Battlefield, NC State Historic Site” submitted focuses on the Harper House located in at the Bentonville Civil War battlefield. UNCG conducted a geophysical survey using a ground penetrating radar and gradiometer. The findings from the data were used to determine and pinpoint areas of interest for subsequent excavation

    Transport infrastructure monitoring by data fusion of GPR and SAR imagery information

    Get PDF
    In order to maintain the highest operational safety standards, it is crucial that surface and structural deformation caused by geophysical natural hazards and human-related activities in linear transport networks (such as highways and railways) are monitored and evaluated. Today, Ground Penetrating Radar (GPR) is a well-established technology among the available non-destructive testing (NDT) methods for the collection of ground-based information. Concurrently, the space-borne Interferometric Synthetic Aperture Radar (InSAR) is another well-known viable methodology for large-scale investigations of road network surface deformations. However, it is fair to comment that the potential of this method in the area of transport infrastructure monitoring has not yet been sufficiently explored. Within this context, this research demonstrates the viability of integrating InSAR and GPR for monitoring transport assets at network level. The main theoretical and working principles of the two above-mentioned methodologies have been presented and discussed, and the advantage and drawbacks of each technique have then been analysed. The final section of the paper examines a recent experimental activity carried out on a real-life railway located in Puglia, Southern Italy. Test outcomes prove the viability of the proposed data fusion methodology for monitoring the health of transport assets at network level

    Guidebook on Detection Technologies and Systems for Humanitarian Demining

    Get PDF
    The aim of this publication is to provide the mine action community, and those supporting mine action, with a consolidated review and status summary of detection technologies that could be applied to humanitarian demining operations. This Guidebook is meant to provide information to a wide variety of readers. For those not familiar with the spectrum of technologies being considered for the detection of landmines and for area reduction, there is a brief overview of the principle of operation for each technology as well as a summary listing of the strengths, limitations, and potential for use of the technology to humanitarian demining. For those with an intermediate level of understanding for detection technologies, there is information regarding some of the more technical details of the system to give an expanded overview of the principles involved and hardware development that has taken place. Where possible, technical specifications for the systems are provided. For those requiring more information for a particular system, relevant publications lists and contact information are also provided

    3-D GPR survey with a modular system: reducing positioning inaccuracies and linear noise

    Get PDF
    Recently, the use of ground-penetrating radar (GPR) arrays with a large number of antenna elements in a fixed configuration has become more common. The investment needed for these systems is significant. Although gradually expandable modular systems, consisting of antennas which can be used independently, do not match the fast acquisition of detailed datasets by means of multi-channel arrays, they can help finding a compromise between increased acquisition speed and (limited) resources. In modular systems, the separation between transmitter-receiver pairs is often larger than the sampling distance prescribed by the Nyquist theorem. As a consequence, additional profiles have to be recorded in between, which requires a high positioning precision. As a completely identical response for the different antennas in an array is difficult to achieve, stripes can occur in the horizontal slices, especially when ringing occurs. This complicates the interpretation of features in the direction of the survey lines. In this paper, a three-dimensional frequency-wavenumber filter is proposed, consisting in a combination of a circular filter and a fan filter. The application of this filter to GPR data collected at the Roman town Mariana (Corsica, France) showed a reduction of the stripe patterns, allowing a more reliable characterization of subtle archaeological structures

    A Study on Recent Developments and Issues with Obstacle Detection Systems for Automated Vehicles

    Get PDF
    This paper reviews current developments and discusses some critical issues with obstacle detection systems for automated vehicles. The concept of autonomous driving is the driver towards future mobility. Obstacle detection systems play a crucial role in implementing and deploying autonomous driving on our roads and city streets. The current review looks at technology and existing systems for obstacle detection. Specifically, we look at the performance of LIDAR, RADAR, vision cameras, ultrasonic sensors, and IR and review their capabilities and behaviour in a number of different situations: during daytime, at night, in extreme weather conditions, in urban areas, in the presence of smooths surfaces, in situations where emergency service vehicles need to be detected and recognised, and in situations where potholes need to be observed and measured. It is suggested that combining different technologies for obstacle detection gives a more accurate representation of the driving environment. In particular, when looking at technological solutions for obstacle detection in extreme weather conditions (rain, snow, fog), and in some specific situations in urban areas (shadows, reflections, potholes, insufficient illumination), although already quite advanced, the current developments appear to be not sophisticated enough to guarantee 100% precision and accuracy, hence further valiant effort is needed
    • …
    corecore