1,562 research outputs found

    Precise service level agreements

    Get PDF
    SLAng is an XML language for defining service level agreements, the part of a contract between the client and provider of an Internet service that describes the quality attributes that the service is required to possess. We define the semantics of SLAng precisely by modelling the syntax of the language in UML, then embedding the language model in an environmental model that describes the structure and behaviour of services. The presence of SLAng elements imposes behavioural constraints on service elements, and the precise definition of these constraints using OCL constitutes the semantic description of the language. We use the semantics to define a notion of SLA compatibility, and an extension to UML that enables the modelling of service situations as a precursor to analysis, implementation and provisioning activities

    Construction of RDF(S) from UML Class Diagrams

    Get PDF
    RDF (Resource Description Framework) and RDF Schema (collectively called RDF(S)) are the normative language to describe the Web resource information. How to construct RDF(S) from the existing data sources is becoming an important research issue. In particular, UML (Unified Modeling Language) is being widely applied to data modeling in many application domains, and how to construct RDF(S) from the existing UML models becomes an important issue to be solved in the context of Semantic Web. By comparing and analyzing the characteristics of UML and RDF(S), this paper proposes an approach for constructing RDF(S) from UML and implements a prototype construction tool. First, we give the formal definitions of UML and RDF(S). After that, a construction approach from UML to RDF(S) is proposed, a construction example is provided, and the analyses and discussions about the approach are done. Further, based on the proposed approach, a prototype construction tool is implemented, and the experiment shows that the approach and the tool are feasible

    Uncertainty representation in software models: a survey

    Get PDF
    This paper provides a comprehensive overview and analysis of research work on how uncertainty is currently represented in software models. The survey presents the definitions and current research status of different proposals for addressing uncertainty modeling and introduces a classification framework that allows to compare and classify existing proposals, analyze their current status and identify new trends. In addition, we discuss possible future research directions, opportunities and challenges.This work is partially supported by the European Commission (FEDER) and the Spanish Government under projects APOLO (US1264651), HORATIO (RTI2018-101204-B-C21), EKIPMENT-PLUS (P18-FR-2895) and COSCA (PGC2018-094905-B-I00)

    Modeling and Representation of Geometric Tolerances Information in Integrated Measurement Processes

    Get PDF
    Modeling and representation of geometric tolerances information across an enterprise is viable due to the advances in Internet technologies and increasing integration requirements from industry. In Integrated Measurement Processes (IMP), geometric tolerances data model must support different models from several well-defined standards: including ASME Y14.5M-1994, STEP, DMIS, and others. In this paper, we propose a layered conformance level geometric tolerances representation model. This model uses the widely applied ASME Y14.5M-1994 as its foundation layer by abstracting most information from this standard. The additional geometric tolerances information defined by DMIS and STEP is incorporated into this model to form corresponding conformance layers that support IMP. Thus, different application domains in an enterprise can use this data model to exchange product information. This model is further transformed with XML Schema that can be used to generate XML instance file to satisfy geometric tolerances representation requirements in IMP

    Diagrammatic Languages and Formal Verification : A Tool-Based Approach

    Get PDF
    The importance of software correctness has been accentuated as a growing number of safety-critical systems have been developed relying on software operating these systems. One of the more prominent methods targeting the construction of a correct program is formal verification. Formal verification identifies a correct program as a program that satisfies its specification and is free of defects. While in theory formal verification guarantees a correct implementation with respect to the specification, applying formal verification techniques in practice has shown to be difficult and expensive. In response to these challenges, various support methods and tools have been suggested for all phases from program specification to proving the derived verification conditions. This thesis concerns practical verification methods applied to diagrammatic modeling languages. While diagrammatic languages are widely used in communicating system design (e.g., UML) and behavior (e.g., state charts), most formal verification platforms require the specification to be written in a textual specification language or in the mathematical language of an underlying logical framework. One exception is invariant-based programming, in which programs together with their specifications are drawn as invariant diagrams, a type of state transition diagram annotated with intermediate assertions (preconditions, postconditions, invariants). Even though the allowed program states—called situations—are described diagrammatically, the intermediate assertions defining a situation’s meaning in the domain of the program are still written in conventional textual form. To explore the use of diagrams in expressing the intermediate assertions of invariant diagrams, we designed a pictorial language for expressing array properties. We further developed this notation into a diagrammatic domain-specific language (DSL) and implemented it as an extension to the Why3 platform. The DSL supports expression of array properties. The language is based on Reynolds’s interval and partition diagrams and includes a construct for mapping array intervals to logic predicates. Automated verification of a program is attained by generating the verification conditions and proving that they are true. In practice, full proof automation is not possible except for trivial programs and verifying even simple properties can require significant effort both in specification and proof stages. An animation tool which supports run-time evaluation of the program statements and intermediate assertions given any user-defined input can support this process. In particular, an execution trace leading up to a failed assertion constitutes a refutation of a verification condition that requires immediate attention. As an extension to Socos, a verificion tool for invariant diagrams built on top of the PVS proof system, we have developed an execution model where program statements and assertions can be evaluated in a given program state. A program is represented by an abstract datatype encoding the program state, together with a small-step state transition function encoding the evaluation of a single statement. This allows the program’s runtime behavior to be formally inspected during verification. We also implement animation and interactive debugging support for Socos. The thesis also explores visualization of system development in the context of model decomposition in Event-B. Decomposing a software system becomes increasingly critical as the system grows larger, since the workload on the theorem provers must be distributed effectively. Decomposition techniques have been suggested in several verification platforms to split the models into smaller units, each having fewer verification conditions and therefore imposing a lighter load on automatic theorem provers. In this work, we have investigated a refinement-based decomposition technique that makes the development process more resilient to change in specification and allows parallel development of sub-models by a team. As part of the research, we evaluated the technique on a small case study, a simplified version of a landing gear system verification presented by Boniol and Wiels, within the Event-B specification language.Vikten av programvaras korrekthet har accentuerats dĂ„ ett vĂ€xande antal sĂ€kerhetskritiska system, vilka Ă€r beroende av programvaran som styr dessa, har utvecklas. En av de mer framtrĂ€dande metoderna som riktar in sig pĂ„ utveckling av korrekt programvara Ă€r formell verifiering. Inom formell verifiering avses med ett korrekt program ett program som uppfyller sina specifikationer och som Ă€r fritt frĂ„n defekter. Medan formell verifiering teoretiskt sett kan garantera ett korrekt program med avseende pĂ„ specifikationerna, har tillĂ€mpligheten av formella verifieringsmetod visat sig i praktiken vara svĂ„r och dyr. Till svar pĂ„ dessa utmaningar har ett stort antal olika stödmetoder och automatiseringsverktyg föreslagits för samtliga faser frĂ„n specifikationen till bevisningen av de hĂ€rledda korrekthetsvillkoren. Denna avhandling behandlar praktiska verifieringsmetoder applicerade pĂ„ diagrambaserade modelleringssprĂ„k. Medan diagrambaserade sprĂ„k ofta anvĂ€nds för kommunikation av programvarudesign (t.ex. UML) samt beteende (t.ex. tillstĂ„ndsdiagram), krĂ€ver de flesta verifieringsplattformar att specifikationen kodas medelst ett textuellt specifikationsspĂ„k eller i sprĂ„ket hos det underliggande logiska ramverket. Ett undantag Ă€r invariantbaserad programmering, inom vilken ett program tillsammans med dess specifikation ritas upp som sk. invariantdiagram, en typ av tillstĂ„ndstransitionsdiagram annoterade med mellanliggande logiska villkor (förvillkor, eftervillkor, invarianter). Även om de tillĂ„tna programtillstĂ„nden—sk. situationer—beskrivs diagrammatiskt Ă€r de logiska predikaten som beskriver en situations betydelse i programmets domĂ€n fortfarande skriven pĂ„ konventionell textuell form. För att vidare undersöka anvĂ€ndningen av diagram vid beskrivningen av mellanliggande villkor inom invariantbaserad programming, har vi konstruerat ett bildbaserat sprĂ„k för villkor över arrayer. Vi har dĂ€refter vidareutvecklat detta sprĂ„k till ett diagrambaserat domĂ€n-specifikt sprĂ„k (domain-specific language, DSL) och implementerat stöd för det i verifieringsplattformen Why3. SprĂ„ket lĂ„ter anvĂ€ndaren uttrycka egenskaper hos arrayer, och Ă€r baserat pĂ„ Reynolds intevall- och partitionsdiagram samt inbegriper en konstruktion för mappning av array-intervall till logiska predikat. Automatisk verifiering av ett program uppnĂ„s genom generering av korrekthetsvillkor och Ă„tföljande bevisning av dessa. I praktiken kan full automatisering av bevis inte uppnĂ„s utom för trivial program, och Ă€ven bevisning av enkla egenskaper kan krĂ€va betydande anstrĂ€ngningar bĂ„de vid specifikations- och bevisfaserna. Ett animeringsverktyg som stöder exekvering av sĂ„vĂ€l programmets satser som mellanliggande villkor för godtycklig anvĂ€ndarinput kan vara till hjĂ€lp i denna process. SĂ€rskilt ett exekveringspĂ„r som leder upp till ett falskt mellanliggande villkor utgör ett direkt vederlĂ€ggande (refutation) av ett bevisvillkor, vilket krĂ€ver omedelbar uppmĂ€rksamhet frĂ„n programmeraren. Som ett tillĂ€gg till Socos, ett verifieringsverktyg för invariantdiagram baserat pĂ„ bevissystemet PVS, har vi utvecklat en exekveringsmodell dĂ€r programmets satser och villkor kan evalueras i ett givet programtillstĂ„nd. Ett program representeras av en abstrakt datatyp för programmets tillstĂ„nd tillsammans med en small-step transitionsfunktion för evalueringen av en enskild programsats. Detta möjliggör att ett programs exekvering formellt kan analyseras under verifieringen. Vi har ocksĂ„ implementerat animation och interaktiv felsökning i Socos. Avhandlingen undersöker ocksĂ„ visualisering av systemutveckling i samband med modelluppdelning inom Event-B. Uppdelning av en systemmodell blir allt mer kritisk dĂ„ ett systemet vĂ€xer sig större, emedan belastningen pĂ„ underliggande teorembe visare mĂ„ste fördelas effektivt. Uppdelningstekniker har föreslagits inom mĂ„nga olika verifieringsplattformar för att dela in modellerna i mindre enheter, sĂ„ att varje enhet har fĂ€rre verifieringsvillkor och dĂ€rmed innebĂ€r en mindre belastning pĂ„ de automatiska teorembevisarna. I detta arbete har vi undersökt en refinement-baserad uppdelningsteknik som gör utvecklingsprocessen mer kapabel att hantera förĂ€ndringar hos specifikationen och som tillĂ„ter parallell utveckling av delmodellerna inom ett team. Som en del av forskningen har vi utvĂ€rderat tekniken pĂ„ en liten fallstudie: en förenklad modell av automationen hos ett landningsstĂ€ll av Boniol and Wiels, uttryckt i Event-B-specifikationsprĂ„ket

    A Formal Architectural Description Language based on Symbolic Transition Systems and Modal Logic

    Get PDF
    International audienceComponent Based Software Engineering has now emerged as a discipline for system development. After years of battle between component platforms, the need for means to abstract away from specific implementation details is now recognized. This paves the way for model driven approaches (such as MDE) but also for the more older Architectural Description Language (ADL) paradigm. In this paper we present KADL, an ADL based on the Korrigan formal language which supports the following features: integration of fully formal behaviours and data types, expressive component composition mechanisms through the use of modal logic, specification readability through graphical notations, and dedicated architectural analysis techniques. Key Words: Architectural Description Language, Component Based Software Engineering, Mixed Formal Specifications, Symbolic Transition Systems, Abstract Data Types, Modal Logic Glue, Graphical Notations, Verification
    • 

    corecore