14,046 research outputs found

    Dependent multiple cue integration for robust tracking

    Get PDF
    We propose a new technique for fusing multiple cues to robustly segment an object from its background in video sequences that suffer from abrupt changes of both illumination and position of the target. Robustness is achieved by the integration of appearance and geometric object features and by their estimation using Bayesian filters, such as Kalman or particle filters. In particular, each filter estimates the state of a specific object feature, conditionally dependent on another feature estimated by a distinct filter. This dependence provides improved target representations, permitting us to segment it out from the background even in nonstationary sequences. Considering that the procedure of the Bayesian filters may be described by a "hypotheses generation-hypotheses correction" strategy, the major novelty of our methodology compared to previous approaches is that the mutual dependence between filters is considered during the feature observation, that is, into the "hypotheses-correction" stage, instead of considering it when generating the hypotheses. This proves to be much more effective in terms of accuracy and reliability. The proposed method is analytically justified and applied to develop a robust tracking system that adapts online and simultaneously the color space where the image points are represented, the color distributions, the contour of the object, and its bounding box. Results with synthetic data and real video sequences demonstrate the robustness and versatility of our method.Peer Reviewe

    Frequency Tracking and Parameter Estimation for Robust Quantum State-Estimation

    Full text link
    In this paper we consider the problem of tracking the state of a quantum system via a continuous measurement. If the system Hamiltonian is known precisely, this merely requires integrating the appropriate stochastic master equation. However, even a small error in the assumed Hamiltonian can render this approach useless. The natural answer to this problem is to include the parameters of the Hamiltonian as part of the estimation problem, and the full Bayesian solution to this task provides a state-estimate that is robust against uncertainties. However, this approach requires considerable computational overhead. Here we consider a single qubit in which the Hamiltonian contains a single unknown parameter. We show that classical frequency estimation techniques greatly reduce the computational overhead associated with Bayesian estimation and provide accurate estimates for the qubit frequencyComment: 6 figures, 13 page

    Robust Filtering and Smoothing with Gaussian Processes

    Full text link
    We propose a principled algorithm for robust Bayesian filtering and smoothing in nonlinear stochastic dynamic systems when both the transition function and the measurement function are described by non-parametric Gaussian process (GP) models. GPs are gaining increasing importance in signal processing, machine learning, robotics, and control for representing unknown system functions by posterior probability distributions. This modern way of "system identification" is more robust than finding point estimates of a parametric function representation. In this article, we present a principled algorithm for robust analytic smoothing in GP dynamic systems, which are increasingly used in robotics and control. Our numerical evaluations demonstrate the robustness of the proposed approach in situations where other state-of-the-art Gaussian filters and smoothers can fail.Comment: 7 pages, 1 figure, draft version of paper accepted at IEEE Transactions on Automatic Contro

    Robust Gaussian Filtering using a Pseudo Measurement

    Full text link
    Many sensors, such as range, sonar, radar, GPS and visual devices, produce measurements which are contaminated by outliers. This problem can be addressed by using fat-tailed sensor models, which account for the possibility of outliers. Unfortunately, all estimation algorithms belonging to the family of Gaussian filters (such as the widely-used extended Kalman filter and unscented Kalman filter) are inherently incompatible with such fat-tailed sensor models. The contribution of this paper is to show that any Gaussian filter can be made compatible with fat-tailed sensor models by applying one simple change: Instead of filtering with the physical measurement, we propose to filter with a pseudo measurement obtained by applying a feature function to the physical measurement. We derive such a feature function which is optimal under some conditions. Simulation results show that the proposed method can effectively handle measurement outliers and allows for robust filtering in both linear and nonlinear systems

    Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of Bayesian filters

    Get PDF
    Modern service robots will soon become an essential part of modern society. As they have to move and act in human environments, it is essential for them to be provided with a fast and reliable tracking system that localizes people in the neighbourhood. It is therefore important to select the most appropriate filter to estimate the position of these persons. This paper presents three efficient implementations of multisensor-human tracking based on different Bayesian estimators: Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Sampling Importance Resampling (SIR) particle filter. The system implemented on a mobile robot is explained, introducing the methods used to detect and estimate the position of multiple people. Then, the solutions based on the three filters are discussed in detail. Several real experiments are conducted to evaluate their performance, which is compared in terms of accuracy, robustness and execution time of the estimation. The results show that a solution based on the UKF can perform as good as particle filters and can be often a better choice when computational efficiency is a key issue
    corecore