1,070 research outputs found

    A Cognitive Robot Control Architecture for Autonomous Execution of Surgical Tasks

    Get PDF
    The research on medical robotics is starting to address the autonomous execution of surgical tasks, without effective intervention of humans apart from supervision and task configuration. This paper addresses the complete automation of a surgical robot by combining advanced sensing, cognition and control capabilities, developed according to rigorous assessment of surgical require- ments, formal specification of robotic system behavior and software design and implementation based on solid tools and frame- works. In particular, the paper focuses on the cognitive control architecture and its development process, based on formal modeling and verification methods as best practices to ensure safe and reliable behavior. Full implementation of the proposed architecture has been tested on an experimental setup including a novel robot specifically designed for surgical applications, but adaptable to different selected tasks (i.e. needle insertion, wound suturing)

    Actuators and sensors for application in agricultural robots: A review

    Get PDF
    In recent years, with the rapid development of science and technology, agricultural robots have gradually begun to replace humans, to complete various agricultural operations, changing traditional agricultural production methods. Not only is the labor input reduced, but also the production efficiency can be improved, which invariably contributes to the development of smart agriculture. This paper reviews the core technologies used for agricultural robots in non-structural environments. In addition, we review the technological progress of drive systems, control strategies, end-effectors, robotic arms, environmental perception, and other related systems. This research shows that in a non-structured agricultural environment, using cameras and light detection and ranging (LiDAR), as well as ultrasonic and satellite navigation equipment, and by integrating sensing, transmission, control, and operation, different types of actuators can be innovatively designed and developed to drive the advance of agricultural robots, to meet the delicate and complex requirements of agricultural products as operational objects, such that better productivity and standardization of agriculture can be achieved. In summary, agricultural production is developing toward a data-driven, standardized, and unmanned approach, with smart agriculture supported by actuator-driven-based agricultural robots. This paper concludes with a summary of the main existing technologies and challenges in the development of actuators for applications in agricultural robots, and the outlook regarding the primary development directions of agricultural robots in the near future

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    Layered control architectures in robots and vertebrates

    Get PDF
    We revieiv recent research in robotics, neuroscience, evolutionary neurobiology, and ethology with the aim of highlighting some points of agreement and convergence. Specifically, we com pare Brooks' (1986) subsumption architecture for robot control with research in neuroscience demonstrating layered control systems in vertebrate brains, and with research in ethology that emphasizes the decomposition of control into multiple, intertwined behavior systems. From this perspective we then describe interesting parallels between the subsumption architecture and the natural layered behavior system that determines defense reactions in the rat. We then consider the action selection problem for robots and vertebrates and argue that, in addition to subsumption- like conflict resolution mechanisms, the vertebrate nervous system employs specialized selection mechanisms located in a group of central brain structures termed the basal ganglia. We suggest that similar specialized switching mechanisms might be employed in layered robot control archi tectures to provide effective and flexible action selection

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains

    Advancing automation and robotics technology for the Space Station Freedom and for the U.S. economy. Submitted to the Congress of the U.S. May 1991

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. The report describes the progress made by Levels 1, 2 and 3 of the Office Space Station in developing and applying advanced automation and robotics technology. Emphasis has been placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 11, the status of the Flight Telerobotic Servicer, and the status of the Advanced Development Program. In addition, an assessment is provided of the automation and robotics status of the Canadian Space Station Program

    Affective Motivational Collaboration Theory

    Get PDF
    Existing computational theories of collaboration explain some of the important concepts underlying collaboration, e.g., the collaborators\u27 commitments and communication. However, the underlying processes required to dynamically maintain the elements of the collaboration structure are largely unexplained. Our main insight is that in many collaborative situations acknowledging or ignoring a collaborator\u27s affective state can facilitate or impede the progress of the collaboration. This implies that collaborative agents need to employ affect-related processes that (1) use the collaboration structure to evaluate the status of the collaboration, and (2) influence the collaboration structure when required. This thesis develops a new affect-driven computational framework to achieve these objectives and thus empower agents to be better collaborators. Contributions of this thesis are: (1) Affective Motivational Collaboration (AMC) theory, which incorporates appraisal processes into SharedPlans theory. (2) New computational appraisal algorithms based on collaboration structure. (3) Algorithms such as goal management, that use the output of appraisal to maintain collaboration structures. (4) Implementation of a computational system based on AMC theory. (5) Evaluation of AMC theory via two user studies to a) validate our appraisal algorithms, and b) investigate the overall functionality of our framework within an end-to-end system with a human and a robot

    Modeling Supervisory Control in Multi Robot Applications

    Get PDF
    We consider multi robot applications, where a human operator monitors and supervise the team to pursue complex objectives in complex environments. Robots, specially at field sites, are often subject to unexpected events that can not be managed without the intervention of the operator(s). For example, in an environmental monitoring application, robots might face extreme environmental events (e.g. water currents) or moving obstacles (e.g. animal approaching the robots). In such scenarios, the operator often needs to interrupt the activities of individual team members to deal with particular situations. This work focuses on human-multi-robot-interaction in these casts. A widely used approach to monitor and supervise robotic teams are team plans, which allow an operator to interact via high level objectives and use automation to work out the details. The first problem we address in this context, is how human interrupts (i.e. change of action due to unexpected events) can be handled within a robotic team. Typically, after such interrupts, the operator would need to restart the team plan to ensure its success. This causes delays and imposes extra load on the operator. We address this problem by presenting an approach to encoding how interrupts can be smoothly handled within a team plan. Building on a team plan formalism that uses Colored Petri Nets, we describe a mechanism that allows a range of interrupts to be handled smoothly, allowing the team to effectively continue with its task after the operator intervention. We validate the approach with an application of robotic water monitoring. Our experiments show that the use of our interrupt mechanism decreases the time to complete the plan (up to 48% reduction) and decreases the operator load (up to 80% reduction in number of user actions). Moreover, we performed experiments with real robotic platforms to validate the applicability of our mechanism in the actual deployment of robotic watercraft. The second problem we address is how to handle intervention requests from robots to the operator. In this case, we consider autonomous robotic platforms that are able to identify their situation and ask for the intervention of the operator by sending a request. However, large teams can easily overwhelm the operator with several requests, hence hindering the team performance. As a consequence, team members will have to wait for the operator attention, and the operator becomes a bottleneck for the system. Our contribution in this context is to make the robots learn cooperative strategies to best utilize the operator's time and decrease the idle time of the robotic system. In particular, we consider a queuing model (a.k.a balking queue), where robots decide whether or not to join the queue. Such decisions are computed by considering dynamic features of the system (e.g. the severity of the request, number of requests, etc.). We examine several decision making solutions for computing these cooperative strategies, where our goal is to find a trade-off between lower idle time by joining the queue and fewer failures due to the risk of not joining the queue. We validate the proposed approaches in a simulation robotic water monitoring application. The obtained results show the effectiveness of our proposed models in comparison to the queue without balking, when considering team reward and total idle time

    Intuitive Human-Robot Cooperation

    Get PDF
    Diese Dissertation beschäftigt sich mit der Mensch-Roboter Kooperation. Dabei wurde eine haptische Schnittstelle entworfen, die dem Benutzer mit Hilfe einer Taktilen Sprache eine weitere non-verbale Interaktionsmodalität zur Verfügung stellt. Außerdem wurde eine Methode zur proaktiven Planung und Ausführung von Roboterhandlungen auf Basis der geschätzten Intention des Menschen erforscht. Zusätzlich wurde eine adäquate Roboterarchitektur konzipiert und implementiert
    • …
    corecore