903 research outputs found

    Scene understanding for autonomous robots operating in indoor environments

    Get PDF
    Mención Internacional en el título de doctorThe idea of having robots among us is not new. Great efforts are continually made to replicate human intelligence, with the vision of having robots performing different activities, including hazardous, repetitive, and tedious tasks. Research has demonstrated that robots are good at many tasks that are hard for us, mainly in terms of precision, efficiency, and speed. However, there are some tasks that humans do without much effort that are challenging for robots. Especially robots in domestic environments are far from satisfactorily fulfilling some tasks, mainly because these environments are unstructured, cluttered, and with a variety of environmental conditions to control. This thesis addresses the problem of scene understanding in the context of autonomous robots operating in everyday human environments. Furthermore, this thesis is developed under the HEROITEA research project that aims to develop a robot system to help elderly people in domestic environments as an assistant. Our main objective is to develop different methods that allow robots to acquire more information from the environment to progressively build knowledge that allows them to improve the performance on high-level robotic tasks. In this way, scene understanding is a broad research topic, and it is considered a complex task due to the multiple sub-tasks that are involved. In that context, in this thesis, we focus on three sub-tasks: object detection, scene recognition, and semantic segmentation of the environment. Firstly, we implement methods to recognize objects considering real indoor environments. We applied machine learning techniques incorporating uncertainties and more modern techniques based on deep learning. Besides, apart from detecting objects, it is essential to comprehend the scene where they can occur. For this reason, we propose an approach for scene recognition that considers the influence of the detected objects in the prediction process. We demonstrate that the exiting objects and their relationships can improve the inference about the scene class. We also consider that a scene recognition model can benefit from the advantages of other models. We propose a multi-classifier model for scene recognition based on weighted voting schemes. The experiments carried out in real-world indoor environments demonstrate that the adequate combination of independent classifiers allows obtaining a more robust and precise model for scene recognition. Moreover, to increase the understanding of a robot about its surroundings, we propose a new division of the environment based on regions to build a useful representation of the environment. Object and scene information is integrated into a probabilistic fashion generating a semantic map of the environment containing meaningful regions within each room. The proposed system has been assessed on simulated and real-world domestic scenarios, demonstrating its ability to generate consistent environment representations. Lastly, full knowledge of the environment can enhance more complex robotic tasks; that is why in this thesis, we try to study how a complete knowledge of the environment influences the robot’s performance in high-level tasks. To do so, we select an essential task, which is searching for objects. This mundane task can be considered a precondition to perform many complex robotic tasks such as fetching and carrying, manipulation, user requirements, among others. The execution of these activities by service robots needs full knowledge of the environment to perform each task efficiently. In this thesis, we propose two searching strategies that consider prior information, semantic representation of the environment, and the relationships between known objects and the type of scene. All our developments are evaluated in simulated and real-world environments, integrated with other systems, and operating in real platforms, demonstrating their feasibility to implement in real scenarios, and in some cases outperforming other approaches. We also demonstrate how our representation of the environment can boost the performance of more complex robotic tasks compared to more standard environmental representations.La idea de tener robots entre nosotros no es nueva. Continuamente se realizan grandes esfuerzos para replicar la inteligencia humana, con la visión de tener robots que realicen diferentes actividades, incluidas tareas peligrosas, repetitivas y tediosas. La investigación ha demostrado que los robots son buenos en muchas tareas que resultan difíciles para nosotros, principalmente en términos de precisión, eficiencia y velocidad. Sin embargo, existen tareas que los humanos realizamos sin mucho esfuerzo y que son un desafío para los robots. Especialmente, los robots en entornos domésticos están lejos de cumplir satisfactoriamente algunas tareas, principalmente porque estos entornos no son estructurados, pueden estar desordenados y cuentan con una gran variedad de condiciones ambientales que controlar. Esta tesis aborda el problema de la comprensión de la escena en el contexto de robots autónomos que operan en entornos humanos cotidianos. Asimismo, esta tesis se desarrolla en el marco del proyecto de investigación HEROITEA que tiene como objetivo desarrollar un sistema robótico que funcione como asistente para ayudar a personas mayores en entornos domésticos. Nuestro principal objetivo es desarrollar diferentes métodos que permitan a los robots adquirir más información del entorno a fin de construir progresivamente un conocimiento que les permita mejorar su desempeño en tareas robóticas más complejas. En este sentido, la comprensión de escenas es un tema de investigación amplio, y se considera una tarea compleja debido a las múltiples subtareas involucradas. En esta tesis nos enfocamos específicamente en tres subtareas: detección de objetos, reconocimiento de escenas y etiquetado semántico del entorno. Por un lado, implementamos métodos para el reconocimiento de objectos considerando entornos interiores reales. Aplicamos técnicas de aprendizaje automático incorporando incertidumbres y técnicas más modernas basadas en aprendizaje profundo. Además, aparte de detectar objetos, es fundamental comprender la escena donde estos se encuentran. Por esta razón, proponemos un modelo para el reconocimiento de escenas que considera la influencia de los objetos detectados en el proceso de predicción. Demostramos que los objetos existentes y sus relaciones pueden mejorar el proceso de inferencia de la categoría de la escena. También consideramos que un modelo de reconocimiento de escenas puede beneficiarse de las ventajas de otros modelos. Por ello, proponemos un multiclasificador para el reconocimiento de escenas basado en esquemas de votación ponderados. Los experimentos llevados a cabo en entornos interiores reales demuestran que la combinación adecuada de clasificadores independientes permite obtener un modelo más robusto y preciso para el reconocimiento de escenas. Adicionalmente, para aumentar la comprensión de un robot acerca de su entorno, proponemos una nueva división del entorno basada en regiones a fin de construir una representación útil del entorno. La información de objetos y de la escena se integra de forma probabilística generando un mapa semántico que contiene regiones significativas dentro de cada habitación. El sistema propuesto ha sido evaluado en entornos domésticos simulados y reales, demostrando su capacidad para generar representaciones consistentes del entorno. Por otro lado, el conocimiento integral del entorno puede mejorar tareas robóticas más complejas; es por ello que en esta tesis analizamos cómo el conocimiento completo del entorno influye en el desempeño del robot en tareas de alto nivel. Para ello, seleccionamos una tarea fundamental, que es la búsqueda de objetos. Esta tarea mundana puede considerarse una condición previa para realizar diversas tareas robóticas complejas, como transportar objetos, tareas de manipulación, atender requerimientos del usuario, entre otras. La ejecución de estas actividades por parte de robots de servicio requiere un conocimiento profundo del entorno para realizar cada tarea de manera eficiente. En esta tesis proponemos dos estrategias de búsqueda de objetos que consideran información previa, la representación semántica del entorno, las relaciones entre los objetos conocidos y el tipo de escena. Todos nuestros desarrollos son evaluados en entornos simulados y reales, integrados con otros sistemas y operando en plataformas reales, demostrando su viabilidad de ser implementados en escenarios reales y, en algunos casos, superando a otros enfoques. También demostramos cómo nuestra representación del entorno puede mejorar el desempeño de tareas robóticas más complejas en comparación con representaciones del entorno más tradicionales.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Carlos Balaguer Bernaldo de Quirós.- Secretario: Fernando Matía Espada.- Vocal: Klaus Strob

    Deep Learning-Based Robotic Perception for Adaptive Facility Disinfection

    Get PDF
    Hospitals, schools, airports, and other environments built for mass gatherings can become hot spots for microbial pathogen colonization, transmission, and exposure, greatly accelerating the spread of infectious diseases across communities, cities, nations, and the world. Outbreaks of infectious diseases impose huge burdens on our society. Mitigating the spread of infectious pathogens within mass-gathering facilities requires routine cleaning and disinfection, which are primarily performed by cleaning staff under current practice. However, manual disinfection is limited in terms of both effectiveness and efficiency, as it is labor-intensive, time-consuming, and health-undermining. While existing studies have developed a variety of robotic systems for disinfecting contaminated surfaces, those systems are not adequate for intelligent, precise, and environmentally adaptive disinfection. They are also difficult to deploy in mass-gathering infrastructure facilities, given the high volume of occupants. Therefore, there is a critical need to develop an adaptive robot system capable of complete and efficient indoor disinfection. The overarching goal of this research is to develop an artificial intelligence (AI)-enabled robotic system that adapts to ambient environments and social contexts for precise and efficient disinfection. This would maintain environmental hygiene and health, reduce unnecessary labor costs for cleaning, and mitigate opportunity costs incurred from infections. To these ends, this dissertation first develops a multi-classifier decision fusion method, which integrates scene graph and visual information, in order to recognize patterns in human activity in infrastructure facilities. Next, a deep-learning-based method is proposed for detecting and classifying indoor objects, and a new mechanism is developed to map detected objects in 3D maps. A novel framework is then developed to detect and segment object affordance and to project them into a 3D semantic map for precise disinfection. Subsequently, a novel deep-learning network, which integrates multi-scale features and multi-level features, and an encoder network are developed to recognize the materials of surfaces requiring disinfection. Finally, a novel computational method is developed to link the recognition of object surface information to robot disinfection actions with optimal disinfection parameters

    J-MOD2^{2}: Joint Monocular Obstacle Detection and Depth Estimation

    Full text link
    In this work, we propose an end-to-end deep architecture that jointly learns to detect obstacles and estimate their depth for MAV flight applications. Most of the existing approaches either rely on Visual SLAM systems or on depth estimation models to build 3D maps and detect obstacles. However, for the task of avoiding obstacles this level of complexity is not required. Recent works have proposed multi task architectures to both perform scene understanding and depth estimation. We follow their track and propose a specific architecture to jointly estimate depth and obstacles, without the need to compute a global map, but maintaining compatibility with a global SLAM system if needed. The network architecture is devised to exploit the joint information of the obstacle detection task, that produces more reliable bounding boxes, with the depth estimation one, increasing the robustness of both to scenario changes. We call this architecture J-MOD2^{2}. We test the effectiveness of our approach with experiments on sequences with different appearance and focal lengths and compare it to SotA multi task methods that jointly perform semantic segmentation and depth estimation. In addition, we show the integration in a full system using a set of simulated navigation experiments where a MAV explores an unknown scenario and plans safe trajectories by using our detection model

    Robot@VirtualHome, an ecosystem of virtual environments and tools for realistic indoor robotic simulation

    Get PDF
    Simulations and synthetic datasets have historically empower the research in different service robotics-related problems, being revamped nowadays with the utilization of rich virtual environments. However, with their use, special attention must be paid so the resulting algorithms are not biased by the synthetic data and can generalize to real world conditions. These aspects are usually compromised when the virtual environments are manually designed. This article presents Robot@VirtualHome, an ecosystem of virtual environments and tools that allows for the management of realistic virtual environments where robotic simulations can be performed. Here “realistic” means that those environments have been designed by mimicking the rooms’ layout and objects appearing in 30 real houses, hence not being influenced by the designer’s knowledge. The provided virtual environments are highly customizable (lighting conditions, textures, objects’ models, etc.), accommodate meta-information about the elements appearing therein (objects’ types, room categories and layouts, etc.), and support the inclusion of virtual service robots and sensors. To illustrate the possibilities of Robot@VirtualHome we show how it has been used to collect a synthetic dataset, and also exemplify how to exploit it to successfully face two service robotics-related problems: semantic mapping and appearance-based localization.This work has been supported by the research projects WISER (DPI2017-84827-R), funded by the Spanish Government and financed by the European Regional Development’s funds (FEDER), ARPEGGIO (PID2020-117057GB-I00), funded by the European H2020 program, by the grant number FPU17/04512 and the UG PHD scholarship pro-gram from the University of Groningen. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal used for this research. We would like to thank the Center for Information Technology of the University of Groningen for their support and for providing access to the Peregrine high performance computing cluste

    Intelligent Robotic Perception Systems

    Get PDF
    Robotic perception is related to many applications in robotics where sensory data and artificial intelligence/machine learning (AI/ML) techniques are involved. Examples of such applications are object detection, environment representation, scene understanding, human/pedestrian detection, activity recognition, semantic place classification, object modeling, among others. Robotic perception, in the scope of this chapter, encompasses the ML algorithms and techniques that empower robots to learn from sensory data and, based on learned models, to react and take decisions accordingly. The recent developments in machine learning, namely deep-learning approaches, are evident and, consequently, robotic perception systems are evolving in a way that new applications and tasks are becoming a reality. Recent advances in human-robot interaction, complex robotic tasks, intelligent reasoning, and decision-making are, at some extent, the results of the notorious evolution and success of ML algorithms. This chapter will cover recent and emerging topics and use-cases related to intelligent perception systems in robotics

    Object-level dynamic SLAM

    Get PDF
    Visual Simultaneous Localisation and Mapping (SLAM) can estimate a camera's pose in an unknown environment and reconstruct an online map of it. Despite the advances in many real-time dense SLAM systems, most still assume a static environment, which is not a valid assumption in many real-world scenarios. This thesis aims to enable dense visual SLAM to run robustly in a dynamic environment, knowing where the sensor is in the environment, and, also importantly, what and where objects are in the surrounding environment for better scene understanding. The contributions in this thesis are threefold. The first one presents one of the first object-level dynamic SLAM systems that robustly track camera pose while detecting, tracking, and reconstructing all the objects in dynamic scenes. It can continuously fuse geometric, semantic, and motion information for each object into an octree-based volumetric representation. One of the challenges in tracking moving objects is that the object motion can easily break the illumination constancy assumption. In our second contribution, we address this issue by proposing a dense feature-metric alignment to robustly estimate camera and object poses. We will show how to learn dense feature maps and feature-metric uncertainties in a self-supervised way. They formulate a probabilistic feature-metric residual, which can be efficiently solved using Gauss-Newton optimisation and easily coupled with other residuals. So far, we can only reconstruct objects' geometry from the sensor data. Our third contribution further incorporates category-level shape prior to the object mapping. Conditioning on the depth measurement, the learned implicit function completes the unseen part while reconstructing the observed part accurately. It can yield better reconstruction completeness and more accurate object pose estimation. These three contributions in this thesis have advanced the state of the art in visual SLAM. We hope such object-level dynamic SLAM systems will help robots intelligently interact with the human-existing world.Open Acces
    corecore