88,500 research outputs found

    A collaborative platform for integrating and optimising Computational Fluid Dynamics analysis requests

    Get PDF
    A Virtual Integration Platform (VIP) is described which provides support for the integration of Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) analysis tools into an environment that supports the use of these tools in a distributed collaborative manner. The VIP has evolved through previous EU research conducted within the VRShips-ROPAX 2000 (VRShips) project and the current version discussed here was developed predominantly within the VIRTUE project but also within the SAFEDOR project. The VIP is described with respect to the support it provides to designers and analysts in coordinating and optimising CFD analysis requests. Two case studies are provided that illustrate the application of the VIP within HSVA: the use of a panel code for the evaluation of geometry variations in order to improve propeller efficiency; and, the use of a dedicated maritime RANS code (FreSCo) to improve the wake distribution for the VIRTUE tanker. A discussion is included detailing the background, application and results from the use of the VIP within these two case studies as well as how the platform was of benefit during the development and a consideration of how it can benefit HSVA in the future

    Manufacturing code generation for rotational parts in a feature based product modelling environment

    Get PDF
    An important element for the integration of CAD/CAM is the representation and handling of data used during the design and manufacturing activities. The use of features and product modelling techniques bring a better handling of this data and provide CAD/CAM with an excellent platform for integration. The thesis explores the use of a predefined set of features in a product modelling environment for the design and machining of rotational components. Theword features in this research implies a set of functional, geometrical and technological information with a unique form. Those features are pre-defined and comprise of a limited number of elements which carry the information related to design and manufacturing activities. The thesis is divided into three main parts. The first part contains a review of topics related to the research e. g. group technology, component features, CAD/CAM and also contains a literature survey of related research works. In the second part the "features" are defined and presented. Also the product modelling environment is explained and the basic rule based procedures which are used to automatize the operation planning activities are presented. In the last part a description of the case-studies used for automatic NC code generation is presented followed by a discussion of the results. Lastly, the conclusions are drawn and ideas for further work presented

    Coupling CAD and CFD codes within a virtual integration platform

    Get PDF
    The Virtual Integration Platform (VIP) is an essential component of the VIRTUE project. It provides a system for combining disparate numerical analysis methods into a simulation environment. The platform allows for defining process chains, allocating of which tools to be used, and assigning users to perform the individual tasks. The platform also manages the data that are imported into or generated within a process, so that a version history of input and output can be evaluated. Within the VIP, a re-usable template for a given process chain can be created. A process chain is composed of one or more smaller tasks. For each of these tasks, a selection of available tools can be allocated. The advanced scripting methods in the VIP use wrappers for managing the individual tools. A wrapper allows communication between the platform and the tool, and passes input and output data as necessary, in most cases without modifying the tool in any way. In this way, third-party tools may also be used without the need for access to source code or special modifications. The included case study demonstrates several advantages of using the integration platform. A parametric propeller design process couples CAD and CFD codes to adapt the propeller to given operating constraints. The VIP template helped eliminate common user errors, and captured enough expert knowledge so that the casual user could perform the given tasks with minimal guidance. Areas of improvements to in-house codes and to the overall process were identified while using the integration platform. Additionally, the process chain was designed to facilitate formal optimisation methods

    Using Computer Technology Tools to Improve the Teaching-Learning Process in Technical and Vocational Education: Mechanical Engineering Subject Area

    Get PDF
    This paper discusses the integration of computer assisted instructions (CAI) with traditional class room teaching. It describes a teaching method to bring real-world of industrial work into the classroom that underscores the need to learn fundamental principles while adding excitement and relevance to the experience. This paper presents results of a case study undertaken to understand the effect of computer assisted teaching methodology on learning effectiveness in classroom environment. The effects of computer assisted instructions on different levels of cognition of individual learners have also been evaluated. The computer aided drawing (CAD), computer aided manufacturing (CAM) and computer numerical control (CNC) courses at the Bahrain institute are an integral part of this attempt. These courses emphasize the development of a 3-D geometric computer model and application of this digital database to all phases of the design process. The students make freehand sketches, build computer models, mate assemblies of parts, perform various analysis, create kinematics simulations, generate final design drawings, import engineering drawing as DXF file, generate NC file to build rapid prototypes as shown in the table 1 below. Keywords: Computer Technology, C.N.C and AutoCad Softwar

    A design environment for synthesis of embedded fuzzy controllers on FPGAs

    Get PDF
    This paper presents a design environment for the synthesis of embedded fuzzy controllers on FPGAs. It provides a novel implementation technique that allows accelerating the exploration of the design space of fuzzy control modules, as well as a codesign flow that eases their integration into complex control systems and the joint development of hardware and software components. The set of CAD tools supporting this environment includes specific fuzzy logic design tools provided by Xfuzzy, FPGA synthesis and implementation tools from Xilinx, and modeling and simulation facilities from Matlab. As demonstrated by the analyzed design examples, the described development strategy takes advantage of flexibility and ease of configuration offered by the different tools to dramatically speed up the stages of description, synthesis, and functional verification of embedded fuzzy control system

    An approach for real world data modelling with the 3D terrestrial laser scanner for built environment

    Get PDF
    Capturing and modelling 3D information of the built environment is a big challenge. A number of techniques and technologies are now in use. These include EDM, GPS, and photogrammetric application, remote sensing and traditional building surveying applications. However, use of these technologies cannot be practical and efficient in regard to time, cost and accuracy. Furthermore, a multi disciplinary knowledge base, created from the studies and research about the regeneration aspects is fundamental: historical, architectural, archeologically, environmental, social, economic, etc. In order to have an adequate diagnosis of regeneration, it is necessary to describe buildings and surroundings by means of documentation and plans. However, at this point in time the foregoing is considerably far removed from the real situation, since more often than not it is extremely difficult to obtain full documentation and cartography, of an acceptable quality, since the material, constructive pathologies and systems are often insufficient or deficient (flat that simply reflects levels, isolated photographs,..). Sometimes the information in reality exists, but this fact is not known, or it is not easily accessible, leading to the unnecessary duplication of efforts and resources. In this paper, we discussed 3D laser scanning technology, which can acquire high density point data in an accurate, fast way. Besides, the scanner can digitize all the 3D information concerned with a real world object such as buildings, trees and terrain down to millimetre detail Therefore, it can provide benefits for refurbishment process in regeneration in the Built Environment and it can be the potential solution to overcome the challenges above. The paper introduce an approach for scanning buildings, processing the point cloud raw data, and a modelling approach for CAD extraction and building objects classification by a pattern matching approach in IFC (Industry Foundation Classes) format. The approach presented in this paper from an undertaken research can lead to parametric design and Building Information Modelling (BIM) for existing structures. Two case studies are introduced to demonstrate the use of laser scanner technology in the Built Environment. These case studies are the Jactin House Building in East Manchester and the Peel building in the campus of University Salford. Through these case studies, while use of laser scanners are explained, the integration of it with various technologies and systems are also explored for professionals in Built Environmen

    On the integration of model-based feature information in Product Lifecycle Management systems

    Get PDF
    [EN] As CAD models continue to become more critical information sources in the product's lifecycle, it is necessary to develop efficient mechanisms to store, retrieve, and manage larger volumes of increasingly complex data. Because of their unique characteristics, 3D annotations can be used to embed design and manufacturing information directly into a CAD model, which makes models effective vehicles to describe aspects of the geometry or provide additional information that can be connected to a particular geometric element. However, access to this information is often limited, difficult, and even unavailable to external applications. As model complexity and volume of information continue to increase, new and more powerful methods to interrogate these annotations are needed. In this paper, we demonstrate how 3D annotations can be effectively structured and integrated into a Product Lifecycle Management (PLM) system to provide a cohesive view of product-related information in a design environment. We present a strategy to organize and manage annotation information which is stored internally in a CAD model, and make it fully available through the PLM. Our method involves a dual representation of 3D annotations with enhanced data structures that provides shared and easy access to the information. We describe the architecture of a system which includes a software component for the CAD environment and a module that integrates with the PLM server. We validate our approach through a software prototype that uses a parametric modeling application and two commercial PLM packages with distinct data models.This work was supported by the Spanish Ministry of Economy and Competitiveness and the FEDER Funds, through the ANNOTA project (Ref. TIN2013-46036-C3-1-R).Camba, J.; Contero, M.; Company, P.; PĂ©rez Lopez, DC. (2017). On the integration of model-based feature information in Product Lifecycle Management systems. International Journal of Information Management. 37(6):611-621. https://doi.org/10.1016/j.ijinfomgt.2017.06.002S61162137

    Integration of virtual reality within the built environment curriculum

    Get PDF
    Virtual Reality (VR) technology is still perceived by many as being inaccessible and cost prohibitive with VR applications considered expensive to develop as well as challenging to operate. This paper reflects on current developments in VR technologies and describes an approach adopted for its phased integration into the academic curriculum of built environment students. The process and end results of implementing the integration are discussed and the paper illustrates the challenges of introducing VR, including the acceptance of the technology by academic staff and students, interest from industry, and issues pertaining to model development. It sets out to show that fairly sophisticated VR models can now be created by non-VR specialists using commercially available software and advocates that the implementation of VR will increase alongside industryis adoption of these tools and the emergence of a new generation of students with VR skills. The study shows that current VR technologies, if integrated appropriately within built environment academic programmes, demonstrate clear promise to provide a foundation for more widespread collaborative working environments
    • 

    corecore