7,381 research outputs found

    Non-Invasive Ventilation Sensor Mask (NIVSM): Preliminary Design and Testing

    Get PDF
    Previous research has emphasized the significance of mask and interface design in non-invasive ventilation (NIV) and the prevention of pressure ulcers (PUs). Multiple variables are involved in the necrosis process, but the skin-mask interface has the significant impact. A preliminary design of a custom-fit Mask (CFM) embedded with microclimate sensor has been introduced previously. This study aims to improve the comfort and safety of patients that use NIV masks for long periods. The personalized cushion fit (PCF) is designed using 3D scanning and printing technology and integrated into a pre existing mask. Integration with a preexisting mask has been achieved by fabricating a modular design that acts as a disposable PCF. Embedded sensors are added to the mask to measure the skin-mask microclimate. Real-time data is plotted and monitored for critical conditions and to identify other key features. A preliminary temperaturehumidity (T-H) monitoring of the skin-mask interface for both PCF and pre-existing mask shows fluctuation trends that could potentially induce PUs. However, there is a more sensitive reaction in the PCF test

    PCF extended with real numbers: a domain-theoretic approach to higher-order exact real number computation

    Get PDF
    We develop a theory of higher-order exact real number computation based on Scott domain theory. Our main object of investigation is a higher-order functional programming language, Real PCF, which is an extension of PCF with a data type for real numbers and constants for primitive real functions. Real PCF has both operational and denotational semantics, related by a computational adequacy property. In the standard interpretation of Real PCF, types are interpreted as continuous Scott domains. We refer to the domains in the universe of discourse of Real PCF induced by the standard interpretation of types as the real numbers type hierarchy. Sequences are functions defined on natural numbers, and predicates are truth-valued functions. Thus, in the real numbers types hierarchy we have real numbers, functions between real numbers, predicates defined on real numbers, sequences of real numbers, sequences of sequences of real numbers, sequences of functions, functionals mapping sequences to numbers (such as limiting operators), functionals mapping functions to numbers (such as integration and supremum operators), functionals mapping predicates to truth-values (such as existential and universal quantification operators), and so on. As it is well-known, the notion of computability on a domain depends on the choice of an effective presentation. We say that an effective presentation of the real numbers type hierarchy is sound if all Real PCF definable elements and functions are computable with respect to it. The idea is that Real PCF has an effective operational semantics, and therefore the definable elements and functions should be regarded as concretely computable. We then show that there is a unique sound effective presentation of the real numbers type hierarchy, up to equivalence with respect to the induced notion of computability. We can thus say that there is an absolute notion of computability for the real numbers type hierarchy. All computable elements and all computable first-order functions in the real numbers type hierarchy are Real PCF definable. However, as it is the case for PCF, some higher-order computable functions, including an existential quantifier, fail to be definable. If a constant for the existential quantifier (or, equivalently, a computable supremum operator) is added, the computational adequacy property remains true, and Real PCF becomes a computationally complete programming language, in the sense that all computable functions of all orders become definable. We introduce induction principles and recursion schemes for the real numbers domain, which are formally similar to the so-called Peano axioms for natural numbers. These principles and schemes abstractly characterize the real numbers domain up to isomorphism, in the same way as the so-called Peano axioms for natural numbers characterize the natural numbers. On the practical side, they allow us to derive recursive definitions of real functions, which immediately give rise to correct Real PCF programs (by an application of computational adequacy). Also, these principles form the core of the proof of absoluteness of the standard effective presentation of the real numbers type hierarchy, and of the proof of computational completeness of Real PCF. Finally, results on integration in Real PCF consisting of joint work with Abbas Edalat are included

    Fully Unintegrated Parton Correlation Functions and Factorization in Lowest Order Hard Scattering

    Full text link
    Motivated by the need to correct the potentially large kinematic errors in approximations used in the standard formulation of perturbative QCD, we reformulate deeply inelastic lepton-proton scattering in terms of gauge invariant, universal parton correlation functions which depend on all components of parton four-momentum. Currently, different hard QCD processes are described by very different perturbative formalisms, each relying on its own set of kinematical approximations. In this paper we show how to set up formalism that avoids approximations on final-state momenta, and thus has a very general domain of applicability. The use of exact kinematics introduces a number of significant conceptual shifts already at leading order, and tightly constrains the formalism. We show how to define parton correlation functions that generalize the concepts of parton density, fragmentation function, and soft factor. After setting up a general subtraction formalism, we obtain a factorization theorem. To avoid complications with Ward identities the full derivation is restricted to abelian gauge theories; even so the resulting structure is highly suggestive of a similar treatment for non-abelian gauge theories.Comment: 44 pages, 69 figures typos fixed, clarifications and second appendix adde

    Hybrid squeezing of solitonic resonant radiation in photonic crystal fibers

    Get PDF
    We report on the existence of a novel kind of squeezing in photonic crystal fibers which is conceptually intermediate between the four-wave mixing induced squeezing, in which all the participant waves are monochromatic waves, and the self-phase modulation induced squeezing for a single pulse in a coherent state. This hybrid squeezing occurs when an arbitrary short soliton emits quasi-monochromatic resonant radiation near a zero group velocity dispersion point of the fiber. Photons around the resonant frequency become strongly correlated due to the presence of the classical soliton, and a reduction of the quantum noise below the shot noise level is predicted.Comment: 5 pages, 2 figure

    Dependence of kinetic friction on velocity: Master equation approach

    Get PDF
    We investigate the velocity dependence of kinetic friction with a model which makes minimal assumptions on the actual mechanism of friction so that it can be applied at many scales provided the system involves multi-contact friction. Using a recently developed master equation approach we investigate the influence of two concurrent processes. First, at a nonzero temperature thermal fluctuations allow an activated breaking of contacts which are still below the threshold. As a result, the friction force monotonically increases with velocity. Second, the aging of contacts leads to a decrease of the friction force with velocity. Aging effects include two aspects: the delay in contact formation and aging of a contact itself, i.e., the change of its characteristics with the duration of stationary contact. All these processes are considered simultaneously with the master equation approach, giving a complete dependence of the kinetic friction force on the driving velocity and system temperature, provided the interface parameters are known

    Bose-Fermi mixtures in the molecular limit

    Full text link
    We consider a Bose-Fermi mixture in the molecular limit of the attractive interaction between fermions and bosons. For a boson density smaller or equal to the fermion density, we show analytically how a T-matrix approach for the constituent bosons and fermions recovers the expected physical limit of a Fermi-Fermi mixture of molecules and atoms. In this limit, we derive simple expressions for the self-energies, the momentum distribution function, and the chemical potentials. By extending these equations to a trapped system, we determine how to tailor the experimental parameters of a Bose-Fermi mixture in order to enhance the 'indirect Pauli exclusion effect' on the boson momentum distribution function. For the homogeneous system, we present finally a Diffusion Monte Carlo simulation which confirms the occurrence of such a peculiar effect.Comment: 13 pages, 7 figures; final versio
    • …
    corecore