1,203,947 research outputs found

    A Very Brief Fall (Original writing, Short stories).

    Get PDF
    This collection contains eight short stories dealing with dissociated characters who strive for connection. Their displacement has, for the most part, a relation to age, place and status. A written discussion of character motivation and endings follows the text, where it is suggested that the characters here are motivated by their displacement, and that integration is never fully achieved. Source: Masters Abstracts International, Volume: 45-01, page: 0076. Thesis (M.A.)--University of Windsor (Canada), 2006

    Enabling VCSEL-on-silicon nitride photonic integrated circuits with micro-transfer-printing

    Get PDF
    New wavelength domains have become accessible for photonic integrated circuits (PICs) with the development of silicon nitride PICs. In particular, the visible and near-infrared wavelength range is of interest for a range of sensing and communication applications. The integration of energy-efficient III-V lasers, such as vertical-cavity surface-emitting lasers (VCSELs), is important for expanding the application portfolio of such PICs. However, most of the demonstrated integration approaches are not easily scalable towards low-cost and large-volume production. In this work, we demonstrate the micro-transfer-printing of bottom-emitting VCSELs on silicon nitride PICs as a path to achieve this. The demonstrated 850 nm lasers show waveguide-coupled powers exceeding 100 mu W, with sub-mA lasing thresholds and mW-level power consumption. A single-mode laser with a side-mode suppression ratio over 45 dB and a tuning range of 5 nm is demonstrated. Combining micro-transfer-printing integration with the extended-cavity VCSEL design developed in this work provides the silicon nitride PIC industry with a great tool to integrate energy-efficient VCSELs onto silicon nitride PICs

    Optimal acquisition policy for a supply network with discount schemes and uncertain demands.

    Get PDF
    This study uses a mathematical programming approach in which a series of Mixed Integer Non-Linear Programming (MINLP) models are developed to represent a supply network for a manufacturer dealing with various quantity or volume discount schemes from suppliers, as well as incorporating uncertain product demands that follow Normal distributions. Furthermore, the manufacturer\u27s optimal acquisition policy and production level are obtained simultaneously by solving the models with an objective of maximizing the expected value of the manufacturer\u27s profit. Although complicated by the employment of an integration function, the mathematical models are solved by a GAMS program with integrated SBB, CONOPT, MINOS, and SNOPT solvers working in collaboration. This research is one of the few studies in this field to use commercial optimization software for solving such complex mathematical models. The MINLP models and the GAMS solution program are applied in two real-world cases, and the preliminary results justify the capabilities of both the mathematical models and the GAMS solution program. Numerical analysis supports the managerial implications regarding the acquisition policy, and the comparison between the quantity discount and the volume discount. (Abstract shortened by UMI.)Dept. of Industrial and Manufacturing Systems Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2006 .M3. Source: Masters Abstracts International, Volume: 45-01, page: 0438. Thesis (M.A.Sc.)--University of Windsor (Canada), 2005

    Thermochemical energy storage of concentrated solar power by Integration of the calcium looping process and a CO2 power cycle

    Get PDF
    Energy storage is the main challenge for a deep penetration of renewable energies into the grid to overcome their intrinsic variability. Thus, the commercial expansion of renewable energy, particularly wind and solar, at large scale depends crucially on the development of cheap, efficient and non-toxic energy storage systems enabling to supply more flexibility to the grid. The Ca-Looping (CaL) process, based upon the reversible carbonation/calcination of CaO, is one of the most promising technologies for thermochemical energy storage (TCES), which offers a high potential for the long-term storage of energy with relatively small storage volume. This manuscript explores the use of the CaL process to store Concentrated Solar Power (CSP). A CSPCaL integration scheme is proposed mainly characterized by the use of a CO2 closed loop for the CaL cycle and power production, which provides heat decoupled from the solar source and temperatures well above the ~550ºC limit that poses the use of molten salts currently used to store energy as sensible heat. The proposed CSP-CaL integration leads to high values of plant global efficiency (of around 45-46%) with a storage capacity that allows for long time gaps between load and discharge. Moreover, the use of environmentally benign, abundantly available and cheap raw materials such as natural limestone would mark a milestone on the road towards the industrial competitiveness of CSP

    NASA's Space Launch System Moves into Testing and Integration

    Get PDF
    NASA's Space Launch System (SLS) has moved from design and manufacturing into testing and integration for its first flight in fiscal year 2020. In 2017, the NASA/industry team completed manufacturing of all major structural elements for the launch vehicle for Exploration Mission-1 (EM-1). This work included shipping the first major flight hardware element to the launch site. Current work is focused on the initial Block 1 variant of SLS, capable of launching more than 70 metric tons (t) to low Earth orbit (LEO). As the needs of the nation's deep space exploration program grow, SLS performance is designed to evolve to a payload mass of 130 t to LEO and up to 45 metric tons (t) to trans-lunar injection (TLI). The advantages of this mass - as well as volume - are critical to the entire exploration architecture for deep space exploration. They translate to greater capability, greater infrastructure and operational simplicity, less overall mission risk, and opportunities to accomplish unprecedented exploration and discovery

    Accurate and efficient algorithm for Bader charge integration

    Full text link
    We propose an efficient, accurate method to integrate the basins of attraction of a smooth function defined on a general discrete grid, and apply it to the Bader charge partitioning for the electron charge density. Starting with the evolution of trajectories in space following the gradient of charge density, we derive an expression for the fraction of space neighboring each grid point that flows to its neighbors. This serves as the basis to compute the fraction of each grid volume that belongs to a basin (Bader volume), and as a weight for the discrete integration of functions over the Bader volume. Compared with other grid-based algorithms, our approach is robust, more computationally efficient with linear computational effort, accurate, and has quadratic convergence. Moreover, it is straightforward to extend to non-uniform grids, such as from a mesh-refinement approach, and can be used to both identify basins of attraction of fixed points and integrate functions over the basins.Comment: 19 pages, 8 figure

    Validation of low velocity impact modelling on different stacking sequences of CFRP laminates and influence of fibre failure

    Get PDF
    This paper presents a validation of low-velocity impact Finite Element (FE) modelling. Based on switching ply location of reference layup [02,452,902,-452]s T700GC/M21 laminated plates from Bouvet et al. (2012) [1], twelve possible layups under a constraint of double-ply, mirror-symmetric, balanced, and quasi- isotropic are allowed. However only seven layups are chosen for the study and one of them reveals the importance of longitudinal fibre compressive failure during impact events. Therefore, the second aspect of this work is the introduction of a fibre compressive failure law associated with fracture damage development. This makes it possible to improve the simulation for all seven different layups. Good correspondence is achieved between simulation and experiment for aspects such as delamination areas/shapes and force–displacement responses. The influence of the addition of fibre compressive failure according to fracture toughness in mode I is discussed

    Derivation of SPH equations in a moving referential coordinate system

    Get PDF
    The conventional SPH method uses kernel interpolation to derive the spatial semi-discretisation of the governing equations. These equations, derived using a straight application of the kernel interpolation method, are not used in practice. Instead the equations, commonly used in SPH codes, are heuristically modified to enforce symmetry and local conservation properties. This paper revisits the process of deriving these semi-discrete SPH equations. It is shown that by using the assumption of a moving referential coordinate system and moving control volume, instead of the fixed referential coordinate system and fixed control volume used in the conventional SPH method, a set of new semi- discrete equations can be rigorously derived. The new forms of semi-discrete equations are similar to the SPH equations used in practice. It is shown through numerical examples that the new rigorously derived equations give similar results to those obtained using the conventional SPH equations
    corecore