3,495 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Delivering elder-care environments utilizing TV-channel based mechanisms

    Get PDF
    In this paper, we present a smart environment for elderly. What makes the development of such system challenging is that the concept of smartness for elderly brings to the extreme the idea of invisibility of the technology. In our experience, elders are well-disposed to new technologies, provided that those will not require significant changes - namely, they are invisible - to their habits. Starting from this consideration, 200 caregivers responses were collected by questionnaire, so as to better understand elders' needs and habits. A system was subsequently developed allowing elders to access a number of "modern web services" as standard TV channels: at channel 43 there is the health status, at channel 45 the photos of the family, at 46 the agenda of the week, just to mention few of the available services. The content of such services is automatically generated by the smart devices in the environment and is managed by the caregivers (e.g., family members) by simple web apps. Fourteen families were asked to install the system in their house. The results of these experiments confirm that the proposed system is considered effective and user-friendly by elders

    AmIE: An Ambient Intelligent Environment for Assisted Living

    Full text link
    In the modern world of technology Internet-of-things (IoT) systems strives to provide an extensive interconnected and automated solutions for almost every life aspect. This paper proposes an IoT context-aware system to present an Ambient Intelligence (AmI) environment; such as an apartment, house, or a building; to assist blind, visually-impaired, and elderly people. The proposed system aims at providing an easy-to-utilize voice-controlled system to locate, navigate and assist users indoors. The main purpose of the system is to provide indoor positioning, assisted navigation, outside weather information, room temperature, people availability, phone calls and emergency evacuation when needed. The system enhances the user's awareness of the surrounding environment by feeding them with relevant information through a wearable device to assist them. In addition, the system is voice-controlled in both English and Arabic languages and the information are displayed as audio messages in both languages. The system design, implementation, and evaluation consider the constraints in common types of premises in Kuwait and in challenges, such as the training needed by the users. This paper presents cost-effective implementation options by the adoption of a Raspberry Pi microcomputer, Bluetooth Low Energy devices and an Android smart watch.Comment: 6 pages, 8 figures, 1 tabl

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    IoT-Based Applications in Healthcare Devices

    Get PDF
    The last decade has witnessed extensive research in the field of healthcare services and their technological upgradation. To be more specific, the Internet of Things (IoT) has shown potential application in connecting various medical devices, sensors, and healthcare professionals to provide quality medical services in a remote location. This has improved patient safety, reduced healthcare costs, enhanced the accessibility of healthcare services, and increased operational efficiency in the healthcare industry. The current study gives an up-to-date summary of the potential healthcare applications of IoT- (HIoT-) based technologies. Herein, the advancement of the application of the HIoT has been reported from the perspective of enabling technologies, healthcare services, and applications in solving various healthcare issues. Moreover, potential challenges and issues in the HIoT system are also discussed. In sum, the current study provides a comprehensive source of information regarding the different fields of application of HIoT intending to help future researchers, who have the interest to work and make advancements in the field to gain insight into the topic

    Progress in ambient assisted systems for independent living by the elderly

    Get PDF
    One of the challenges of the ageing population in many countries is the efficient delivery of health and care services, which is further complicated by the increase in neurological conditions among the elderly due to rising life expectancy. Personal care of the elderly is of concern to their relatives, in case they are alone in their homes and unforeseen circumstances occur, affecting their wellbeing. The alternative; i.e. care in nursing homes or hospitals is costly and increases further if specialized care is mobilized to patients’ place of residence. Enabling technologies for independent living by the elderly such as the ambient assisted living systems (AALS) are seen as essential to enhancing care in a cost-effective manner. In light of significant advances in telecommunication, computing and sensor miniaturization, as well as the ubiquity of mobile and connected devices embodying the concept of the Internet of Things (IoT), end-to-end solutions for ambient assisted living have become a reality. The premise of such applications is the continuous and most often real-time monitoring of the environment and occupant behavior using an event-driven intelligent system, thereby providing a facility for monitoring and assessment, and triggering assistance as and when needed. As a growing area of research, it is essential to investigate the approaches for developing AALS in literature to identify current practices and directions for future research. This paper is, therefore, aimed at a comprehensive and critical review of the frameworks and sensor systems used in various ambient assisted living systems, as well as their objectives and relationships with care and clinical systems. Findings from our work suggest that most frameworks focused on activity monitoring for assessing immediate risks while the opportunities for integrating environmental factors for analytics and decision-making, in particular for the long-term care were often overlooked. The potential for wearable devices and sensors, as well as distributed storage and access (e.g. cloud) are yet to be fully appreciated. There is a distinct lack of strong supporting clinical evidence from the implemented technologies. Socio-cultural aspects such as divergence among groups, acceptability and usability of AALS were also overlooked. Future systems need to look into the issues of privacy and cyber security

    Deployment of assisted living technology using intelligent body sensors platform for elderly people health monitoring

    Get PDF
    Many of the Ambient Assisted Living Technologies (AALT) available to the end-users as off- shelf products have no common inter-operational protocol (Language). Each product has its own communication protocols, different interfaces and interoperation which limits their solution efficiency for long term health condition monitoring systems. This paper presents assisted living technology (ALT) solution for elderly people based on wireless sensors networking technology. The system includes biofeedback monitoring body sensors, such as: blood pressure, heart rate and body temperature. Each sensor has been integrated with the necessary real time embedded protocol and system to work in ad-hoc bases. The data will be send wirelessly and shared though cloud network. The collected data will be processed and relevant algorithms will be deployed to take certain actions when any changes occur or health warnings arise. These will be treated with high confidentiality to ensure end-users integrity and dignity have been maintained. The proposed solution system will provide the flexibility to analyse most of the health conditions based on near real time monitoring technology. It will also enable the population of elderly to manage their daily life activities within multiple environments i.e. from their comfort home, care centers and hospitals
    • …
    corecore