6,173 research outputs found

    Integrating 2D Mouse Emulation with 3D Manipulation for Visualizations on a Multi-Touch Table

    Get PDF
    We present the Rizzo, a multi-touch virtual mouse that has been designed to provide the fine grained interaction for information visualization on a multi-touch table. Our solution enables touch interaction for existing mouse-based visualizations. Previously, this transition to a multi-touch environment was difficult because the mouse emulation of touch surfaces is often insufficient to provide full information visualization functionality. We present a unified design, combining many Rizzos that have been designed not only to provide mouse capabilities but also to act as zoomable lenses that make precise information access feasible. The Rizzos and the information visualizations all exist within a touch-enabled 3D window management system. Our approach permits touch interaction with both the 3D windowing environment as well as with the contents of the individual windows contained therein. We describe an implementation of our technique that augments the VisLink 3D visualization environment to demonstrate how to enable multi-touch capabilities on all visualizations written with the popular prefuse visualization toolkit.

    Integrating 2D Mouse Emulation with 3D Manipulation for Visualizations on a Multi-Touch Table

    Get PDF

    Designing Improved Sediment Transport Visualizations

    Get PDF
    Monitoring, or more commonly, modeling of sediment transport in the coastal environment is a critical task with relevance to coastline stability, beach erosion, tracking environmental contaminants, and safety of navigation. Increased intensity and regularity of storms such as Superstorm Sandy heighten the importance of our understanding of sediment transport processes. A weakness of current modeling capabilities is the ability to easily visualize the result in an intuitive manner. Many of the available visualization software packages display only a single variable at once, usually as a two-dimensional, plan-view cross-section. With such limited display capabilities, sophisticated 3D models are undermined in both the interpretation of results and dissemination of information to the public. Here we explore a subset of existing modeling capabilities (specifically, modeling scour around man-made structures) and visualization solutions, examine their shortcomings and present a design for a 4D visualization for sediment transport studies that is based on perceptually-focused data visualization research and recent and ongoing developments in multivariate displays. Vector and scalar fields are co-displayed, yet kept independently identifiable utilizing human perception\u27s separation of color, texture, and motion. Bathymetry, sediment grain-size distribution, and forcing hydrodynamics are a subset of the variables investigated for simultaneous representation. Direct interaction with field data is tested to support rapid validation of sediment transport model results. Our goal is a tight integration of both simulated data and real world observations to support analysis and simulation of the impact of major sediment transport events such as hurricanes. We unite modeled results and field observations within a geodatabase designed as an application schema of the Arc Marine Data Model. Our real-world focus is on the Redbird Artificial Reef Site, roughly 18 nautical miles offshor- Delaware Bay, Delaware, where repeated surveys have identified active scour and bedform migration in 27 m water depth amongst the more than 900 deliberately sunken subway cars and vessels. Coincidently collected high-resolution multibeam bathymetry, backscatter, and side-scan sonar data from surface and autonomous underwater vehicle (AUV) systems along with complementary sub-bottom, grab sample, bottom imagery, and wave and current (via ADCP) datasets provide the basis for analysis. This site is particularly attractive due to overlap with the Delaware Bay Operational Forecast System (DBOFS), a model that provides historical and forecast oceanographic data that can be tested in hindcast against significant changes observed at the site during Superstorm Sandy and in predicting future changes through small-scale modeling around the individual reef objects

    Collaborative behavior, performance and engagement with visual analytics tasks using mobile devices

    Get PDF
    Interactive visualizations are external tools that can support users’ exploratory activities. Collaboration can bring benefits to the exploration of visual representations or visu‐ alizations. This research investigates the use of co‐located collaborative visualizations in mobile devices, how users working with two different modes of interaction and view (Shared or Non‐Shared) and how being placed at various position arrangements (Corner‐to‐Corner, Face‐to‐Face, and Side‐by‐Side) affect their knowledge acquisition, engagement level, and learning efficiency. A user study is conducted with 60 partici‐ pants divided into 6 groups (2 modes×3 positions) using a tool that we developed to support the exploration of 3D visual structures in a collaborative manner. Our results show that the shared control and view version in the Side‐by‐Side position is the most favorable and can improve task efficiency. In this paper, we present the results and a set of recommendations that are derived from them

    Spatial Interaction for Immersive Mixed-Reality Visualizations

    Get PDF
    Growing amounts of data, both in personal and professional settings, have caused an increased interest in data visualization and visual analytics. Especially for inherently three-dimensional data, immersive technologies such as virtual and augmented reality and advanced, natural interaction techniques have been shown to facilitate data analysis. Furthermore, in such use cases, the physical environment often plays an important role, both by directly influencing the data and by serving as context for the analysis. Therefore, there has been a trend to bring data visualization into new, immersive environments and to make use of the physical surroundings, leading to a surge in mixed-reality visualization research. One of the resulting challenges, however, is the design of user interaction for these often complex systems. In my thesis, I address this challenge by investigating interaction for immersive mixed-reality visualizations regarding three core research questions: 1) What are promising types of immersive mixed-reality visualizations, and how can advanced interaction concepts be applied to them? 2) How does spatial interaction benefit these visualizations and how should such interactions be designed? 3) How can spatial interaction in these immersive environments be analyzed and evaluated? To address the first question, I examine how various visualizations such as 3D node-link diagrams and volume visualizations can be adapted for immersive mixed-reality settings and how they stand to benefit from advanced interaction concepts. For the second question, I study how spatial interaction in particular can help to explore data in mixed reality. There, I look into spatial device interaction in comparison to touch input, the use of additional mobile devices as input controllers, and the potential of transparent interaction panels. Finally, to address the third question, I present my research on how user interaction in immersive mixed-reality environments can be analyzed directly in the original, real-world locations, and how this can provide new insights. Overall, with my research, I contribute interaction and visualization concepts, software prototypes, and findings from several user studies on how spatial interaction techniques can support the exploration of immersive mixed-reality visualizations.Zunehmende Datenmengen, sowohl im privaten als auch im beruflichen Umfeld, fĂŒhren zu einem zunehmenden Interesse an Datenvisualisierung und visueller Analyse. Insbesondere bei inhĂ€rent dreidimensionalen Daten haben sich immersive Technologien wie Virtual und Augmented Reality sowie moderne, natĂŒrliche Interaktionstechniken als hilfreich fĂŒr die Datenanalyse erwiesen. DarĂŒber hinaus spielt in solchen AnwendungsfĂ€llen die physische Umgebung oft eine wichtige Rolle, da sie sowohl die Daten direkt beeinflusst als auch als Kontext fĂŒr die Analyse dient. Daher gibt es einen Trend, die Datenvisualisierung in neue, immersive Umgebungen zu bringen und die physische Umgebung zu nutzen, was zu einem Anstieg der Forschung im Bereich Mixed-Reality-Visualisierung gefĂŒhrt hat. Eine der daraus resultierenden Herausforderungen ist jedoch die Gestaltung der Benutzerinteraktion fĂŒr diese oft komplexen Systeme. In meiner Dissertation beschĂ€ftige ich mich mit dieser Herausforderung, indem ich die Interaktion fĂŒr immersive Mixed-Reality-Visualisierungen im Hinblick auf drei zentrale Forschungsfragen untersuche: 1) Was sind vielversprechende Arten von immersiven Mixed-Reality-Visualisierungen, und wie können fortschrittliche Interaktionskonzepte auf sie angewendet werden? 2) Wie profitieren diese Visualisierungen von rĂ€umlicher Interaktion und wie sollten solche Interaktionen gestaltet werden? 3) Wie kann rĂ€umliche Interaktion in diesen immersiven Umgebungen analysiert und ausgewertet werden? Um die erste Frage zu beantworten, untersuche ich, wie verschiedene Visualisierungen wie 3D-Node-Link-Diagramme oder Volumenvisualisierungen fĂŒr immersive Mixed-Reality-Umgebungen angepasst werden können und wie sie von fortgeschrittenen Interaktionskonzepten profitieren. FĂŒr die zweite Frage untersuche ich, wie insbesondere die rĂ€umliche Interaktion bei der Exploration von Daten in Mixed Reality helfen kann. Dabei betrachte ich die Interaktion mit rĂ€umlichen GerĂ€ten im Vergleich zur Touch-Eingabe, die Verwendung zusĂ€tzlicher mobiler GerĂ€te als Controller und das Potenzial transparenter Interaktionspanels. Um die dritte Frage zu beantworten, stelle ich schließlich meine Forschung darĂŒber vor, wie Benutzerinteraktion in immersiver Mixed-Reality direkt in der realen Umgebung analysiert werden kann und wie dies neue Erkenntnisse liefern kann. Insgesamt trage ich mit meiner Forschung durch Interaktions- und Visualisierungskonzepte, Software-Prototypen und Ergebnisse aus mehreren Nutzerstudien zu der Frage bei, wie rĂ€umliche Interaktionstechniken die Erkundung von immersiven Mixed-Reality-Visualisierungen unterstĂŒtzen können

    Augmented Reality Chemistry: Transforming 2-D Molecular Representations into Interactive 3-D Structures

    Get PDF
    Spatial reasoning is defined as the ability to generate, retain, and manipulate abstract visual images. In chemistry, spatial reasoning skills are typically taught using 2-D paper-based models, 3-D handheld models, and computerized models. These models are designed to aid student learning by integrating information from the macroscopic, microscopic, and symbolic domains of chemistry. Research has shown that increased spatial reasoning abilities translate directly to improved content knowledge. The recent explosion in the popularity of smartphones and the development of augmented reality apps for them provide, a yet to be explored, way of teaching spatial reasoning skills to chemistry students. Augmented reality apps can use the camera on a smartphone to turn 2-D paper-based molecular models into 3-D models the user can manipulate. This paper will discuss the development, implementation, and assessment of an augmented reality app that transforms 2-D molecular representations into interactive 3-D structures

    Towards an integrated vision of a climateproof Groningen

    Get PDF
    The Groningen province is gathering ideas on spatial adaptations for climate proofing the province. Such ideas on spatial adaptations for climate change have been produced and collected during a number of workshops in which experts on (e.g.) energy, ecology, water, agriculture and the climate shared their vision on how to make Groningen ready for climate change. Two kinds of workshop sessions were organized to define a coherent set of adaptation measures. Sector-specific workshops focused on generating solutions for problems in a specific domain (e.g. nature or energy), while more general sessions aimed to establish integrated visions for climate change adaption in Groningen. In the sector-specific sessions, experts gathered adaptation measures for societal domains such as energy generation, ecology, coastal management and water management. Gathering these ideas led to a large number of maps that show threats and proposed measures for a specific theme. In total, four sessions produced 28 separate maps, each with a (partially) different set of adaptation measures for Groningen
    • 

    corecore