4,621 research outputs found

    Will 5G See its Blind Side? Evolving 5G for Universal Internet Access

    Get PDF
    Internet has shown itself to be a catalyst for economic growth and social equity but its potency is thwarted by the fact that the Internet is off limits for the vast majority of human beings. Mobile phones---the fastest growing technology in the world that now reaches around 80\% of humanity---can enable universal Internet access if it can resolve coverage problems that have historically plagued previous cellular architectures (2G, 3G, and 4G). These conventional architectures have not been able to sustain universal service provisioning since these architectures depend on having enough users per cell for their economic viability and thus are not well suited to rural areas (which are by definition sparsely populated). The new generation of mobile cellular technology (5G), currently in a formative phase and expected to be finalized around 2020, is aimed at orders of magnitude performance enhancement. 5G offers a clean slate to network designers and can be molded into an architecture also amenable to universal Internet provisioning. Keeping in mind the great social benefits of democratizing Internet and connectivity, we believe that the time is ripe for emphasizing universal Internet provisioning as an important goal on the 5G research agenda. In this paper, we investigate the opportunities and challenges in utilizing 5G for global access to the Internet for all (GAIA). We have also identified the major technical issues involved in a 5G-based GAIA solution and have set up a future research agenda by defining open research problems

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    A Review of Current Research Trends in Power-Electronic Innovations in Cyber-Physical Systems.

    Get PDF
    In this paper, a broad overview of the current research trends in power-electronic innovations in cyber-physical systems (CPSs) is presented. The recent advances in semiconductor device technologies, control architectures, and communication methodologies have enabled researchers to develop integrated smart CPSs that can cater to the emerging requirements of smart grids, renewable energy, electric vehicles, trains, ships, internet of things (IoTs), etc. The topics presented in this paper include novel power-distribution architectures, protection techniques considering large renewable integration in smart grids, wireless charging in electric vehicles, simultaneous power and information transmission, multi-hop network-based coordination, power technologies for renewable energy and smart transformer, CPS reliability, transactive smart railway grid, and real-time simulation of shipboard power systems. It is anticipated that the research trends presented in this paper will provide a timely and useful overview to the power-electronics researchers with broad applications in CPSs.post-print2.019 K

    Network virtualization as an integrated solution for emergency communication

    Get PDF
    In this paper the Virtual Private Ad Hoc Networking (VPAN) platform is introduced as an integrated networking solution for many applications that require secure transparent continuous connectivity using heterogeneous devices and network technologies. This is done by creating a virtual logical self-organizing network on top of existing network technologies reducing complexity and maintaining session continuity right from the start. One of the most interesting applications relies in the field of emergency communication with its specific needs which will be discussed in this paper and matched in detail against the architecture and features of the VPAN platform. The concept and dynamics are demonstrated and evaluated with measurements done on real hardware

    A Cognitive Routing framework for Self-Organised Knowledge Defined Networks

    Get PDF
    This study investigates the applicability of machine learning methods to the routing protocols for achieving rapid convergence in self-organized knowledge-defined networks. The research explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and beyond, aiming to design a routing protocol that complies with the SON requirements. Further, it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to extend the routing capability by calculating the “Most Reliable” path than the shortest one. The research identifies the potential key areas and possible techniques to meet the objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, Hybrid SDN architectures, intelligent routing models, and service migration techniques. The design phase focuses primarily on the mathematical modelling of the routing problem and approaches the solution by optimizing at the structural level. The work contributes Stochastic Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a secure migration technique for containerized services in a Multi-access Edge Computing environment using Distributed Ledger Technology. The research work now eyes the development of 6G standards and its compliance with Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep Reinforcement Learning and Quantum Computing

    06031 Abstracts Collection -- Organic Computing -- Controlled Emergence

    Get PDF
    Organic Computing has emerged recently as a challenging vision for future information processing systems, based on the insight that we will soon be surrounded by large collections of autonomous systems equipped with sensors and actuators to be aware of their environment, to communicate freely, and to organize themselves in order to perform the actions and services required. Organic Computing Systems will adapt dynamically to the current conditions of its environment, they will be self-organizing, self-configuring, self-healing, self-protecting, self-explaining, and context-aware. From 15.01.06 to 20.01.06, the Dagstuhl Seminar 06031 ``Organic Computing -- Controlled Emergence\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. The seminar was characterized by the very constructive search for common ground between engineering and natural sciences, between informatics on the one hand and biology, neuroscience, and chemistry on the other. The common denominator was the objective to build practically usable self-organizing and emergent systems or their components. An indicator for the practical orientation of the seminar was the large number of OC application systems, envisioned or already under implementation, such as the Internet, robotics, wireless sensor networks, traffic control, computer vision, organic systems on chip, an adaptive and self-organizing room with intelligent sensors or reconfigurable guiding systems for smart office buildings. The application orientation was also apparent by the large number of methods and tools presented during the seminar, which might be used as building blocks for OC systems, such as an evolutionary design methodology, OC architectures, especially several implementations of observer/controller structures, measures and measurement tools for emergence and complexity, assertion-based methods to control self-organization, wrappings, a software methodology to build reflective systems, and components for OC middleware. Organic Computing is clearly oriented towards applications but is augmented at the same time by more theoretical bio-inspired and nature-inspired work, such as chemical computing, theory of complex systems and non-linear dynamics, control mechanisms in insect swarms, homeostatic mechanisms in the brain, a quantitative approach to robustness, abstraction and instantiation as a central metaphor for understanding complex systems. Compared to its beginnings, Organic Computing is coming of age. The OC vision is increasingly padded with meaningful applications and usable tools, but the path towards full OC systems is still complex. There is progress in a more scientific understanding of emergent processes. In the future, we must understand more clearly how to open the configuration space of technical systems for on-line modification. Finally, we must make sure that the human user remains in full control while allowing the systems to optimize
    • …
    corecore