20 research outputs found

    Geoprocessing Optimization in Grids

    Get PDF
    Geoprocessing is commonly used in solving problems across disciplines which feature geospatial data and/or phenomena. Geoprocessing requires specialized algorithms and more recently, due to large volumes of geospatial databases and complex geoprocessing operations, it has become data- and/or compute-intensive. The conventional approach, which is predominately based on centralized computing solutions, is unable to handle geoprocessing efficiently. To that end, there is a need for developing distributed geoprocessing solutions by taking advantage of existing and emerging advanced techniques and high-performance computing and communications resources. As an emerging new computing paradigm, grid computing offers a novel approach for integrating distributed computing resources and supporting collaboration across networks, making it suitable for geoprocessing. Although there have been research efforts applying grid computing in the geospatial domain, there is currently a void in the literature for a general geoprocessing optimization. In this research, a new optimization technique for geoprocessing in grid systems, Geoprocessing Optimization in Grids (GOG), is designed and developed. The objective of GOG is to reduce overall response time with a reasonable cost. To meet this objective, GOG contains a set of algorithms, including a resource selection algorithm and a parallelism processing algorithm, to speed up query execution. GOG is validated by comparing its optimization time and estimated costs of generated execution plans with two existing optimization techniques. A proof of concept based on an application in air quality control is developed to demonstrate the advantages of GOG

    Sixth Goddard Conference on Mass Storage Systems and Technologies Held in Cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems

    Get PDF
    This document contains copies of those technical papers received in time for publication prior to the Sixth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems at the University of Maryland-University College Inn and Conference Center March 23-26, 1998. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, tape optimization, new technology, performance, standards, site reports, vendor solutions. Tutorials will be available on shared file systems, file system backups, data mining, and the dynamics of obsolescence

    Proceedings of the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications

    Get PDF
    The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's

    Formal extension of the relational model for the management of spatial and spatio-temporal data

    Get PDF
    [Resumen] En los últioms años, se ha realizado un gran esfuerzo investigador en la manipulación de datos especiales y Sistemas de Información Geográfica (SIG). Una clara limitación de las primeras aproximaciones es la falta de integración entre datos geográficos y alfanuméricos. Para resolver esto surge el área de Bases de Datos Espaciales. Los problemas que aparecen en este campo son muchos y complejos. Un primer ejemplo son las peculiaridades de las operaciones espaciales, como el calculo de la intersección espacial de dos superficies. Otro ejemplo es el elegir las estructuras de datos apropiadas (relaciones, capas, etc.) y el conjunto de operaciones adeucado. La combinación con las Bases de Datos Temporales da lugar a las Bases de Datos Espacio-temporales, en las que la inclusión de la dimensión temporal complica más los problemas anteriores. A pesar de la gran cantidad de aproximaciones propuestas, no se ha llegado todavía a una solución satisfactoria. La presente tesis propone una nueva solución que resuelve todos los problemas de modelado de datos espaciales y espacio-temporales resaltados arriba. Parte del trabajo se completó durante el proyecto ""CHOROCRONOS"": A Research Network for Saptiotemporal Database Systems"", financiado por la Unión Europea. El modelo propuesto en la tesis define tres tipos de dato punto, línea y superficie, que encajan perfectamente en la percepción humana. La definición de estos tipos de dato se basa en la definición previa de Quanta Espacial. Las estructuras de datos usadas son las relaciones no anidadas de modelo relacional puro. El conjunto de operaciones relacionales permite alcanzar casi por completo la funcionalidad propuesta en otros modelos. Todas las operaciones han sido definidas en base a un núcleo reducido de operaciones primitvas. Todos los tipos de datos, espaciales, espacio-temporales y convencionales se manipulan de forma uniforme con este conjunto de operaciones

    IPAD 2: Advances in Distributed Data Base Management for CAD/CAM

    Get PDF
    The Integrated Programs for Aerospace-Vehicle Design (IPAD) Project objective is to improve engineering productivity through better use of computer-aided design and manufacturing (CAD/CAM) technology. The focus is on development of technology and associated software for integrated company-wide management of engineering information. The objectives of this conference are as follows: to provide a greater awareness of the critical need by U.S. industry for advancements in distributed CAD/CAM data management capability; to present industry experiences and current and planned research in distributed data base management; and to summarize IPAD data management contributions and their impact on U.S. industry and computer hardware and software vendors

    The Fifth Workshop on HPC Best Practices: File Systems and Archives

    Full text link
    The workshop on High Performance Computing (HPC) Best Practices on File Systems and Archives was the fifth in a series sponsored jointly by the Department Of Energy (DOE) Office of Science and DOE National Nuclear Security Administration. The workshop gathered technical and management experts for operations of HPC file systems and archives from around the world. Attendees identified and discussed best practices in use at their facilities, and documented findings for the DOE and HPC community in this report

    Complex adaptive systems based data integration : theory and applications

    Get PDF
    Data Definition Languages (DDLs) have been created and used to represent data in programming languages and in database dictionaries. This representation includes descriptions in the form of data fields and relations in the form of a hierarchy, with the common exception of relational databases where relations are flat. Network computing created an environment that enables relatively easy and inexpensive exchange of data. What followed was the creation of new DDLs claiming better support for automatic data integration. It is uncertain from the literature if any real progress has been made toward achieving an ideal state or limit condition of automatic data integration. This research asserts that difficulties in accomplishing integration are indicative of socio-cultural systems in general and are caused by some measurable attributes common in DDLs. This research’s main contributions are: (1) a theory of data integration requirements to fully support automatic data integration from autonomous heterogeneous data sources; (2) the identification of measurable related abstract attributes (Variety, Tension, and Entropy); (3) the development of tools to measure them. The research uses a multi-theoretic lens to define and articulate these attributes and their measurements. The proposed theory is founded on the Law of Requisite Variety, Information Theory, Complex Adaptive Systems (CAS) theory, Sowa’s Meaning Preservation framework and Zipf distributions of words and meanings. Using the theory, the attributes, and their measures, this research proposes a framework for objectively evaluating the suitability of any data definition language with respect to degrees of automatic data integration. This research uses thirteen data structures constructed with various DDLs from the 1960\u27s to date. No DDL examined (and therefore no DDL similar to those examined) is designed to satisfy the law of requisite variety. No DDL examined is designed to support CAS evolutionary processes that could result in fully automated integration of heterogeneous data sources. There is no significant difference in measures of Variety, Tension, and Entropy among DDLs investigated in this research. A direction to overcome the common limitations discovered in this research is suggested and tested by proposing GlossoMote, a theoretical mathematically sound description language that satisfies the data integration theory requirements. The DDL, named GlossoMote, is not merely a new syntax, it is a drastic departure from existing DDL constructs. The feasibility of the approach is demonstrated with a small scale experiment and evaluated using the proposed assessment framework and other means. The promising results require additional research to evaluate GlossoMote’s approach commercial use potential

    Architecture and implementation of online communities

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references.by Philip Greenspun.Ph.D
    corecore