319,772 research outputs found

    EDACs and test integration strategies for NAND flash memories

    Get PDF
    Mission-critical applications usually presents several critical issues: the required level of dependability of the whole mission always implies to address different and contrasting dimensions and to evaluate the tradeoffs among them. A mass-memory device is always needed in all mission-critical applications: NAND flash-memories could be used for this goal. Error Detection And Correction (EDAC) techniques are needed to improve dependability of flash-memory devices. However also testing strategies need to be explored in order to provide highly dependable systems. Integrating these two main aspects results in providing a fault-tolerant mass-memory device, but no systematic approach has so far been proposed to consider them as a whole. As a consequence a novel strategy integrating a particular code-based design environment with newly selected testing strategies is presented in this pape

    Quantifying Changes in Creativity: Findings from an Engineering Course on the Design of Complex and Origami Structures

    Get PDF
    Engineering educators have increasingly sought strategies for integrating the arts into their curricula. The primary objective of this integration varies, but one common objective is to improve students’ creative thinking skills. In this paper, we sought to quantify changes in student creativity that resulted from participation in a mechanical engineering course targeted at integrating engineering, technology, and the arts. The course was team taught by instructors from mechanical engineering and art. The art instructor introduced origami principles and techniques as a means for students to optimize engineering structures. Through a course project, engineering student teams interacted with art students to perform structural analysis on an origami-based art installation, which was the capstone project of the art instructor’s undergraduate origami course. Three engineering student teams extended this course project to collaborate with the art students in the final design and physical installation. To evaluate changes in student creativity, we used two instruments: a revised version of the Reisman Diagnostic Creativity Assessment (RDCA) and the Innovative Behavior Scales. Initially, the survey contained 12 constructs, but three were removed due to poor internal consistency reliability: Extrinsic Motivation; Intrinsic Motivation; and Tolerance of Ambiguity. The nine remaining constructs used for comparison herein included: • Originality: Confidence in developing original, innovative ideas • Ideation: Confidence in generating many ideas • Risk Taking: Adventurous; Brave • Openness of Process: Engaging various potentialities and resisting closure • Iterative Processing: Willingness to iterate on one’s solution • Questioning: Tendency to ask lots of questions • Experimenting/exploring: Tendency to physically or mentally take things apart • Idea networking: Tendency to engage with diverse others in communicative acts • Observing: Tendency to observe the surrounding world By conducting a series of paired t-tests to ascertain if pre and post-course responses were significantly different on the above constructs, we found five significant changes. In order of significance, these included Idea Networking; Questioning; Observing; Originality; and Ideation. To help explain these findings, and to identify how this course may be improved in subsequent offerings, the discussion includes the triangulation of these findings in light of teaching observations, responses from a mid-semester student focus group session, and informal faculty reflections. We close with questions that we and others ought to address as we strive to integrate engineering, technology, and the arts. We hope that these findings and discussion will guide other scholars and instructors as they explore the impact of art on engineering design learning, and as they seek to evaluate student creativity resulting from courses with similar aims

    Integrating IVHM and asset design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collecting of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process

    Integrating IVHM and Asset Design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collection of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process
    corecore