14,313 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    From ERP to advanced resource planning: Improving the operational performance by getting the inputs right.

    Get PDF
    In this paper, we show that the planning and decision support capabilities of the MPC (Manufacturing Planning and Control) system, which forms the core of any ERP package, may be greatly enhanced by including an Advanced Resource Planning (ARP) module as an add-on at the midterm planning level. This ARP module enables to estimate the impact of variability, complexity and dynamic system behavior on key planning parameters. As such, it yields realistic information both for short-term planning purposes and for reliable lead time quotations. We show how dynamic behavior impacts the operational performance of a manufacturing system, and discuss the framework for incorporating the ARP module into the ERP system.Planning; Operational performance; Performance; International; Science;

    Advanced resource planning as decision support module to ERP.

    Get PDF
    In this paper, we show that the planning and decision-support capabilities of the MPC (Manufacturing Planning and Control) system, which forms the core of any ERP (Enterprise Resource Planning) package, may be substantively enhanced by including a Decision Support Module (DSM) as an add-on at the midterm planning level. This DSM, called Advanced Resource Planning (ARP), serves as parameter setting process as well as tool for improving the structure of the ERP system itself. The ultimate goal of the DSM is to yield realistic information both for scheduling, sales and marketing, strategic and operational decision making and suppliers and customers.

    Modular reactors: What can we learn from modular industrial plants and off site construction research

    Get PDF
    New modular factory-built methodologies implemented in the construction and industrial plant industries may bring down costs for modular reactors. A factory-built environment brings about benefits such as; improved equipment, tools, quality, shift patterns, training, continuous improvement learning, environmental control, standardisation, parallel working, the use of commercial off shelf equipment and much of the commissioning can be completed before leaving the factory. All these benefits combine to reduce build schedules, increase certainty, reduce risk and make financing easier and cheaper.Currently, the construction and industrial chemical plant industries have implemented successful modular design and construction techniques. Therefore, the objectives of this paper are to understand and analyse the state of the art research in these industries through a systematic literature review. The research can then be assessed and applied to modular reactors.The literature review highlighted analysis methods that may prove to be useful. These include; modularisation decision tools, stakeholder analysis, schedule, supply chain, logistics, module design tools and construction site planning. Applicable research was highlighted for further work exploration for designers to assess, develop and efficiently design their modular reactors

    The application of discrete event simulation and system dynamics in the logistics and supply chain context

    Get PDF
    Discrete event simulation (DES) and system dynamics (SD) are two modelling approaches widely used as decision support tools in logistics and supply chain management (LSCM). A widely held belief exists that SD is mostly used to model problems at a strategic level, whereas DES is used at an operational/tactical level. This paper explores the application of DES and SD as decision support systems (DSS) for LSCM by looking at the nature and level of issues modelled. Peer reviewed journal papers that use these modelling approaches to study supply chains, published between 1996 and 2006 are reviewed. A total of 127 journal articles are analysed to identify the frequency with which the two simulation approaches are used as modelling tools for DSS in LSCM. Our findings suggest that DES has been used more frequently to model supply chains, with the exception of the bullwhip effect, which is mostly modelled using SD. Based on the most commonly used modelling approach, issues in LSCM are categorised into four groups: the DES domain, the SD domain, the common domain and the less common domain. The study furthermore suggests that in terms of the level of decision making involved, strategic or operational/tactical, there is no difference in the use of either DES or SD. The results of this study inform the existing literature about the use of DES and SD as DSS tools in LSCM

    Supply Chain Modeling and Green Supply Chain: Literature Revue

    Get PDF
    A green supply chain should be rethought towards the term greening, whereas greening concerns in particular the environment, a lot of research works has been carried out jointly on the supply chain and the environmental dimension, exclusively supply chain modeling. This article is intended to present, first of all a summarized literature review of supply chain, green supply chain, and its modeling. Many researchers have proposed different models of green supply chain, except that each model is specific to the studied supply chain. Tending to meet this challenge the contribution of this paper is to propose a general framework of the green supply chains modeling

    Food industry supply chain planning with product quality indicators

    Get PDF
    Quantitative supply chain modelling has contributed substantially to a number of fields, such as the automotive industry, logistics and computer hardware. The inherent methods and optimisation techniques could also be explored in relation to the food industry in order to offer potential benefits. One of the major issues of the food industry is to overcome supply seasonality and on-shelf demand. On the shelf demand is the consumer’s in store demand which could also be seasonal. Objective of this work is to add flexibility to seasonal products (i.e. soup) in order to meet the on-shelf demand. In order to achieve this, a preparation process is introduced and integrated into the manufacturing system. This process increases the shelf-life of raw materials before starting the production process. This process, however, affects the quality of fresh raw materials and requires energy. Therefore, a supply chain model is developed, which is based on the link between the quality of the raw material and the processing conditions, which have an effect on the process’ energy consumption and on the overall product quality. It is challenging to quantify the quality by looking at the processing conditions (degrees of freedom) and by linking it with energy in order to control and optimise the quality and energy consumption for each product. The degrees of freedom are defined differently for each process and state. Therefore, the developed model could be applied to all states and processes in order to generate an optimum solution. Moreover, based on the developed model, we have determined key factors in the whole chain, which are most likely to affect the product quality and consequently overall demand. There are two main quality indicator classes to be optimised, which are both considered in the model: static and time dependent indicators. Also, this work considers three different preparation processes – the air-dry, freeze-dry and freezing process – in order to increase the shelf-life of fresh raw materials and to add flexibility to them. A model based on the interrelationship between the quality and the processing conditions has been developed. This new methodology simplifies and enables the model to find the optimum processing conditions in order to obtain optimum quality across all quality indicators, whilst ensuring minimum energy consumption. This model is later integrated into the supply chain system, where it generates optimum solutions, which are then fed into the supply chain model. The supply chain model optimises the quality in terms of customer satisfaction, energy consumption and wastage of the system linked to environmental issues, and cost, so that the final products are more economical. In this system, both the manufacturing and inventory systems are optimised. This model is later implemented with a real world industrial case study (provided by the industrial collaborator). Two case studies are considered (soya milk and soup) and interestingly enough only one of them (soup) corresponds with this model. The advantage of this model is that it compares the two systems and then establishes which system generates an optimum end product.Open Acces

    Supply chain network design for the diffusion of a new product

    Get PDF
    Supply Chain Network Design (SCND) deals with the determination of the physical configuration and infrastructures of the supply chain. Specifically, facility location is one of the most critical decisions: transportation, inventory and information sharing decisions can be readily re-optimized in response to changes in the context, while facility location is often fixed and difficult to change even in the medium term. On top of this, when designing a supply network to support a new product diffusion (NPD), the problem becomes both dynamic and stochastic. While literature concentrated on approaching SCND for NPD separately coping with dynamic and stochastic issues, we propose an integrated optimisation model, which allows warehouse positioning decisions in concert with the demand dynamics during the diffusion stage of an innovative product/service. A stochastic dynamic model, which integrates a Stochastic Bass Model (SBM) in order to better describe and capture demand dynamics, is presented. A myopic policy is elaborated in order to solve and validate on the data of a real case of SCND with 1,400 potential market points and 28 alternatives for logistics platforms
    • …
    corecore