460 research outputs found

    Virtual biopsy in abdominal pathology: where do we stand?

    Get PDF
    In recent years, researchers have explored new ways to obtain information from pathological tissues, also exploring non-invasive techniques, such as virtual biopsy (VB). VB can be defined as a test that provides promising outcomes compared to traditional biopsy by extracting quantitative information from radiological images not accessible through traditional visual inspection. Data are processed in such a way that they can be correlated with the patient’s phenotypic expression, or with molecular patterns and mutations, creating a bridge between traditional radiology, pathology, genomics, and artificial intelligence (AI). Radiomics is the backbone of VB, since it allows the extraction and selection of features from radiological images, feeding them into AI models in order to derive lesions' pathological characteristics and molecular status. Presently, the output of VB provides only a gross approximation of the findings of tissue biopsy. However, in the future, with the improvement of imaging resolution and processing techniques, VB could partially substitute the classical surgical or percutaneous biopsy, with the advantage of being non-invasive, comprehensive, accounting for lesion heterogeneity, and low cost. In this review, we investigate the concept of VB in abdominal pathology, focusing on its pipeline development and potential benefits

    Integrative analysis of histopathological images and chromatin accessibility data for estrogen receptor-positive breast cancer

    Get PDF
    Background: Existing studies have demonstrated that the integrative analysis of histopathological images and genomic data can be used to better understand the onset and progression of many diseases, as well as identify new diagnostic and prognostic biomarkers. However, since the development of pathological phenotypes are influenced by a variety of complex biological processes, complete understanding of the underlying gene regulatory mechanisms for the cell and tissue morphology is still a challenge. In this study, we explored the relationship between the chromatin accessibility changes and the epithelial tissue proportion in histopathological images of estrogen receptor (ER) positive breast cancer. Methods: An established whole slide image processing pipeline based on deep learning was used to perform global segmentation of epithelial and stromal tissues. We then used canonical correlation analysis to detect the epithelial tissue proportion-associated regulatory regions. By integrating ATAC-seq data with matched RNA-seq data, we found the potential target genes that associated with these regulatory regions. Then we used these genes to perform the following pathway and survival analysis. Results: Using canonical correlation analysis, we detected 436 potential regulatory regions that exhibited significant correlation between quantitative chromatin accessibility changes and the epithelial tissue proportion in tumors from 54 patients (FDR < 0.05). We then found that these 436 regulatory regions were associated with 74 potential target genes. After functional enrichment analysis, we observed that these potential target genes were enriched in cancer-associated pathways. We further demonstrated that using the gene expression signals and the epithelial tissue proportion extracted from this integration framework could stratify patient prognoses more accurately, outperforming predictions based on only omics or image features. Conclusion: This integrative analysis is a useful strategy for identifying potential regulatory regions in the human genome that are associated with tumor tissue quantification. This study will enable efficient prioritization of genomic regulatory regions identified by ATAC-seq data for further studies to validate their causal regulatory function. Ultimately, identifying epithelial tissue proportion-associated regulatory regions will further our understanding of the underlying molecular mechanisms of disease and inform the development of potential therapeutic targets

    Искусственный интеллект при колоректальном раке: обзор

    Get PDF
    The study objective: the study objective is to examine the use of artificial intelligence (AI) in the diagnosis, treatment, and prognosis of Colorectal Cancer (CRC) and discuss the future potential of AI in CRC. Material and Methods. The Web of Science, Scopus, PubMed, Medline, and eLIBRARY databases were used to search for the publications. A study on the application of Artificial Intelligence (AI) to the diagnosis, treatment, and prognosis of Colorectal Cancer (CRC) was discovered in more than 100 sources. In the review, data from 83 articles were incorporated. Results. The review article explores the use of artificial intelligence (AI) in medicine, specifically focusing on its applications in colorectal cancer (CRC). It discusses the stages of AI development for CRC, including molecular understanding, image-based diagnosis, drug design, and individualized treatment. The benefits of AI in medical image analysis are highlighted, improving diagnosis accuracy and inspection quality. Challenges in AI development are addressed, such as data standardization and the interpretability of machine learning algorithms. The potential of AI in treatment decision support, precision medicine, and prognosis prediction is discussed, emphasizing the role of AI in selecting optimal treatments and improving surgical precision. Ethical and regulatory considerations in integrating AI are mentioned, including patient trust, data security, and liability in AI-assisted surgeries. The review emphasizes the importance of an AI standard system, dataset standardization, and integrating clinical knowledge into AI algorithms. Overall, the article provides an overview of the current research on AI in CRC diagnosis, treatment, and prognosis, discussing its benefits, challenges, and future prospects in improving medical outcomes.Цель исследования - оценка возможностей использования искусственного интеллекта (ИИ) в диагностике, лечении и прогнозировании колоректального рака (КРР), а также обсуждение потенциала ИИ в лечении КРР. Материал и методы. Проведен поиск научных публикаций в поисковых системах Web of Science, Scopus, PubMed, Medline и eLIBRARY. Было просмотрено более 100 источников по применению ИИ для диагностики, лечения и прогнозирования КРР. В обзор включены данные из 83 статей. Результаты. Проведен анализ литературы, посвященной применению искусственного интеллекта в медицине, особое внимание уделено его использованию при колоректальном раке. Обсуждаются этапы развития ИИ при КРР, включая молекулярную верификацию, лучевую диагностику, разработку лекарств и индивидуальное лечение. Подчеркнуты преимущества ИИ в анализе медицинских изображений, таких как КТ, МРТ и ПЭТ, что повышает точность диагностики. Рассматриваются такие проблемы развития ИИ, как стандартизация данных и интерпретируемость алгоритмов машинного обучения. Подчеркивается роль ИИ в выборе оптимальной тактики лечения и повышении эффективности хирургического вмешательства. Учитываются этические и нормативные аспекты ИИ, включая доверие пациентов, безопасность данных и ответственность в проведении операций с использованием ИИ. Обсуждаются преимущества ИИ в диагностике, лечении и прогнозировании колоректального рака, проблемы и перспективы улучшения результатов лечения

    Nephroblastoma in MRI Data

    Get PDF
    The main objective of this work is the mathematical analysis of nephroblastoma in MRI sequences. At the beginning we provide two different datasets for segmentation and classification. Based on the first dataset, we analyze the current clinical practice regarding therapy planning on the basis of annotations of a single radiologist. We can show with our benchmark that this approach is not optimal and that there may be significant differences between human annotators and even radiologists. In addition, we demonstrate that the approximation of the tumor shape currently used is too coarse granular and thus prone to errors. We address this problem and develop a method for interactive segmentation that allows an intuitive and accurate annotation of the tumor. While the first part of this thesis is mainly concerned with the segmentation of Wilms’ tumors, the second part deals with the reliability of diagnosis and the planning of the course of therapy. The second data set we compiled allows us to develop a method that dramatically improves the differential diagnosis between nephroblastoma and its precursor lesion nephroblastomatosis. Finally, we can show that even the standard MRI modality for Wilms’ tumors is sufficient to estimate the developmental tendencies of nephroblastoma under chemotherapy

    A Pragmatic Machine Learning Approach to Quantify Tumor-Infiltrating Lymphocytes in Whole Slide Images

    Get PDF
    Increased levels of tumor-infiltrating lymphocytes (TILs) indicate favorable outcomes in many types of cancer. The manual quantification of immune cells is inaccurate and time-consuming for pathologists. Our aim is to leverage a computational solution to automatically quantify TILs in standard diagnostic hematoxylin and eosin-stained sections (H&E slides) from lung cancer patients. Our approach is to transfer an open-source machine learning method for the segmentation and classification of nuclei in H&E slides trained on public data to TIL quantification without manual labeling of the data. Our results show that the resulting TIL quantification correlates to the patient prognosis and compares favorably to the current state-of-the-art method for immune cell detection in non-small cell lung cancer (current standard CD8 cells in DAB-stained TMAs HR 0.34, 95% CI 0.17–0.68 vs. TILs in HE WSIs: HoVer-Net PanNuke Aug Model HR 0.30, 95% CI 0.15–0.60 and HoVer-Net MoNuSAC Aug model HR 0.27, 95% CI 0.14–0.53). Our approach bridges the gap between machine learning research, translational clinical research and clinical implementation. However, further validation is warranted before implementation in a clinical setting

    Quantitative chemical imaging: A top-down systems pathology approach to predict colon cancer patient survival

    Get PDF
    Colon cancer is the second deadliest cancer, affecting the quality of life in older patients. Prognosis is useful in developing an informed disease management strategy, which can improve mortality as well as patient comfort. Morphometric assessment provides diagnosis, grade, and stage information. However, it is subjective, requires multi-step sample processing, and annotations by pathologists. In addition, morphometric techniques offer minimal molecular information that can be crucial in determining prognosis. The interaction of the tumor with its surrounding stroma, comprised of several biomolecular factors and cells is a critical determinant of the behavior of the disease. To evaluate this interaction objectively, we need biomolecular profiling in spatially specific context. In this work, we achieved this by analyzing tissue microarrays using infrared spectroscopic imaging. We developed supervised classification algorithms that were used to reliably segment colon tissue into histological components, including differentiation of normal and desmoplastic stroma. Thus, infrared spectroscopic imaging enabled us to map the stromal changes around the tumor. This supervised classification achieved >0.90 area under the curve of the receiver operating characteristic curve for pixel level classification. Using these maps, we sought to define evaluation criteria to assess the segmented colon images to determine prognosis. We measured the interaction of tumor with the surrounding stroma containing activated fibroblast in the form of mathematical functions that took into account the structure of tumor and the prevalence of reactive stroma. Using these functions, we found that the interaction effect of large tumor size in the presence of a high density of activated fibroblasts provided patients with worse outcome. The overall 6-year probability of survival in patient groups that were classified as “low-risk” was 0.73 whereas in patients that were “high-risk” was 0.54 at p-value <0.0003. Remarkably, the risk score defined in this work was independent of patient risk assessed by stage and grade of the tumor. Thus, objective evaluation of prognosis, which adds to the current clinical regimen, was achieved by a completely automated analysis of unstained patient tissue to determine the risk of 6-year death. In this work, we demonstrate that quantitative chemical imaging using infrared spectroscopic imaging is an effective method to measure tumor-tumor microenvironment interactions. As a top-down systems pathology approach, our work integrated morphometry based spatial constraints and biochemistry based stromal changes to identify markers that gave us mechanistic insights into the tumor behavior. Our work shows that while the tumor microenvironment changes are prognostic, an interaction model that takes into account both the extent of microenvironment modifications, as well as the tumor morphology, is a better predictor of prognosis. Finally, we also developed automated tumor grade determination using deep learning based infrared image analysis. Thus, the computational models developed in this work provide an objective, processing-free and automated way to predict tumor behavior
    corecore