4,987 research outputs found

    Numerical simulation of the stress-strain state of the dental system

    Full text link
    We present mathematical models, computational algorithms and software, which can be used for prediction of results of prosthetic treatment. More interest issue is biomechanics of the periodontal complex because any prosthesis is accompanied by a risk of overloading the supporting elements. Such risk can be avoided by the proper load distribution and prediction of stresses that occur during the use of dentures. We developed the mathematical model of the periodontal complex and its software implementation. This model is based on linear elasticity theory and allows to calculate the stress and strain fields in periodontal ligament and jawbone. The input parameters for the developed model can be divided into two groups. The first group of parameters describes the mechanical properties of periodontal ligament, teeth and jawbone (for example, elasticity of periodontal ligament etc.). The second group characterized the geometric properties of objects: the size of the teeth, their spatial coordinates, the size of periodontal ligament etc. The mechanical properties are the same for almost all, but the input of geometrical data is complicated because of their individual characteristics. In this connection, we develop algorithms and software for processing of images obtained by computed tomography (CT) scanner and for constructing individual digital model of the tooth-periodontal ligament-jawbone system of the patient. Integration of models and algorithms described allows to carry out biomechanical analysis on three-dimensional digital model and to select prosthesis design.Comment: 19 pages, 9 figure

    Crepuscular Rays for Tumor Accessibility Planning

    Get PDF

    The Topology ToolKit

    Full text link
    This system paper presents the Topology ToolKit (TTK), a software platform designed for topological data analysis in scientific visualization. TTK provides a unified, generic, efficient, and robust implementation of key algorithms for the topological analysis of scalar data, including: critical points, integral lines, persistence diagrams, persistence curves, merge trees, contour trees, Morse-Smale complexes, fiber surfaces, continuous scatterplots, Jacobi sets, Reeb spaces, and more. TTK is easily accessible to end users due to a tight integration with ParaView. It is also easily accessible to developers through a variety of bindings (Python, VTK/C++) for fast prototyping or through direct, dependence-free, C++, to ease integration into pre-existing complex systems. While developing TTK, we faced several algorithmic and software engineering challenges, which we document in this paper. In particular, we present an algorithm for the construction of a discrete gradient that complies to the critical points extracted in the piecewise-linear setting. This algorithm guarantees a combinatorial consistency across the topological abstractions supported by TTK, and importantly, a unified implementation of topological data simplification for multi-scale exploration and analysis. We also present a cached triangulation data structure, that supports time efficient and generic traversals, which self-adjusts its memory usage on demand for input simplicial meshes and which implicitly emulates a triangulation for regular grids with no memory overhead. Finally, we describe an original software architecture, which guarantees memory efficient and direct accesses to TTK features, while still allowing for researchers powerful and easy bindings and extensions. TTK is open source (BSD license) and its code, online documentation and video tutorials are available on TTK's website

    Engineering Collaborations in Medical Modeling and Simulation

    Get PDF
    Fifty years ago computer science was just beginning to see common acceptance as a growing discipline and very few universities had a computer science department although other departments were utilizing computers and software to enhance their methodologies. We believe modeling and simulation (M&S) is on a similar path. Many other disciplines utilize M&S to enhance their methodologies but we also believe that M&S fundamentals can be essential in making better decisions by utilizing the appropriate model for the problem at hand, expanding the solution space through simulation, and understanding it through visualization and proper analyses. After our students learn these fundamentals, we offer the opportunity to apply them to varied application areas. One such application area is medical M&S, which is a broad area involving anatomical modeling, planning and training simulations, image-guided procedures and more. In this paper, we share several research projects involving M&S and the collaborations that make them possible

    Waltz - An exploratory visualization tool for volume data, using multiform abstract displays

    Get PDF
    Although, visualization is now widely used, misinterpretations still occur. There are three primary solutions intended to aid a user interpret data correctly. These are: displaying the data in different forms (Multiform visualization); simplifying (or abstracting) the structure of the viewed information; and linking objects and views together (allowing corresponding objects to be jointly manipulated and interrogated). These well-known visualization techniques, provide an emphasis towards the visualization display. We believe however that current visualization systems do not effectively utilise the display, for example, often placing it at the end of a long visualization process. Our visualization system, based on an adapted visualization model, allows a display method to be used throughout the visualization process, in which the user operates a 'Display (correlate) and Refine' visualization cycle. This display integration provides a useful exploration environment, where objects and Views may be directly manipulated; a set of 'portions of interest' can be selected to generate a specialized dataset. This may subsequently be further displayed, manipulated and filtered

    The Effects of Amygdalar Size Normalization on Group Analysis in Late-Life Depression

    Get PDF
    Structural MRI has been utilized in numerous ways to measure morphologic characteristics of subcortical brain regions. Volumetric analysis is frequently used to quantify the size of brain structures to ultimately compare size differences between individuals. In order to make such comparisons, inter-subject variability in brain and/or head size must be taken into consideration. A heterogeneous set of methods are commonly used to normalize regional volume by brain and/or head size yielding inconsistent findings making it diffcult to interpret and compare results from published volumetric studies. This study investigated the effect that various volume normalization methodologies might have on group analysis. Specifically, the amygdalae were the regions of interest in elderly, healthy and depressed individuals. Normalization methods investigated included spatial transformations, brain and head volume, and tissue volume techniques. Group analyses were conducted with independent t-tests by dividing amygdalar volumes by various volume measures, as well as with univariate analysis of covariance (ANCOVA) analyses by using amygdalar volumes as dependent variables and various volume measures as covariates. Repeated measures ANOVA was performed to assess the effect of each normalization procedure. Results indicate that volumetric differences between groups varied based on the normalization method utilized, which may explain, in part, the discrepancy found in amygdalar volumetric studies. We believe the findings of this study are extensible to other brain regions and demographics, and thus, investigators should carefully consider the normalization methods utilized in volumetric studies to properly interpret the results and conclusions

    Development of a Surgical Assistance System for Guiding Transcatheter Aortic Valve Implantation

    Get PDF
    Development of image-guided interventional systems is growing up rapidly in the recent years. These new systems become an essential part of the modern minimally invasive surgical procedures, especially for the cardiac surgery. Transcatheter aortic valve implantation (TAVI) is a recently developed surgical technique to treat severe aortic valve stenosis in elderly and high-risk patients. The placement of stented aortic valve prosthesis is crucial and typically performed under live 2D fluoroscopy guidance. To assist the placement of the prosthesis during the surgical procedure, a new fluoroscopy-based TAVI assistance system has been developed. The developed assistance system integrates a 3D geometrical aortic mesh model and anatomical valve landmarks with live 2D fluoroscopic images. The 3D aortic mesh model and landmarks are reconstructed from interventional angiographic and fluoroscopic C-arm CT system, and a target area of valve implantation is automatically estimated using these aortic mesh models. Based on template-based tracking approach, the overlay of visualized 3D aortic mesh model, landmarks and target area of implantation onto fluoroscopic images is updated by approximating the aortic root motion from a pigtail catheter motion without contrast agent. A rigid intensity-based registration method is also used to track continuously the aortic root motion in the presence of contrast agent. Moreover, the aortic valve prosthesis is tracked in fluoroscopic images to guide the surgeon to perform the appropriate placement of prosthesis into the estimated target area of implantation. An interactive graphical user interface for the surgeon is developed to initialize the system algorithms, control the visualization view of the guidance results, and correct manually overlay errors if needed. Retrospective experiments were carried out on several patient datasets from the clinical routine of the TAVI in a hybrid operating room. The maximum displacement errors were small for both the dynamic overlay of aortic mesh models and tracking the prosthesis, and within the clinically accepted ranges. High success rates of the developed assistance system were obtained for all tested patient datasets. The results show that the developed surgical assistance system provides a helpful tool for the surgeon by automatically defining the desired placement position of the prosthesis during the surgical procedure of the TAVI.Die Entwicklung bildgeführter interventioneller Systeme wächst rasant in den letzten Jahren. Diese neuen Systeme werden zunehmend ein wesentlicher Bestandteil der technischen Ausstattung bei modernen minimal-invasiven chirurgischen Eingriffen. Diese Entwicklung gilt besonders für die Herzchirurgie. Transkatheter Aortenklappen-Implantation (TAKI) ist eine neue entwickelte Operationstechnik zur Behandlung der schweren Aortenklappen-Stenose bei alten und Hochrisiko-Patienten. Die Platzierung der Aortenklappenprothese ist entscheidend und wird in der Regel unter live-2D-fluoroskopischen Bildgebung durchgeführt. Zur Unterstützung der Platzierung der Prothese während des chirurgischen Eingriffs wurde in dieser Arbeit ein neues Fluoroskopie-basiertes TAKI Assistenzsystem entwickelt. Das entwickelte Assistenzsystem überlagert eine 3D-Geometrie des Aorten-Netzmodells und anatomischen Landmarken auf live-2D-fluoroskopische Bilder. Das 3D-Aorten-Netzmodell und die Landmarken werden auf Basis der interventionellen Angiographie und Fluoroskopie mittels eines C-Arm-CT-Systems rekonstruiert. Unter Verwendung dieser Aorten-Netzmodelle wird das Zielgebiet der Klappen-Implantation automatisch geschätzt. Mit Hilfe eines auf Template Matching basierenden Tracking-Ansatzes wird die Überlagerung des visualisierten 3D-Aorten-Netzmodells, der berechneten Landmarken und der Zielbereich der Implantation auf fluoroskopischen Bildern korrekt überlagert. Eine kompensation der Aortenwurzelbewegung erfolgt durch Bewegungsverfolgung eines Pigtail-Katheters in Bildsequenzen ohne Kontrastmittel. Eine starrere Intensitätsbasierte Registrierungsmethode wurde verwendet, um kontinuierlich die Aortenwurzelbewegung in Bildsequenzen mit Kontrastmittelgabe zu detektieren. Die Aortenklappenprothese wird in die fluoroskopischen Bilder eingeblendet und dient dem Chirurg als Leitfaden für die richtige Platzierung der realen Prothese. Eine interaktive Benutzerschnittstelle für den Chirurg wurde zur Initialisierung der Systemsalgorithmen, zur Steuerung der Visualisierung und für manuelle Korrektur eventueller Überlagerungsfehler entwickelt. Retrospektive Experimente wurden an mehreren Patienten-Datensätze aus der klinischen Routine der TAKI in einem Hybrid-OP durchgeführt. Hohe Erfolgsraten des entwickelten Assistenzsystems wurden für alle getesteten Patienten-Datensätze erzielt. Die Ergebnisse zeigen, dass das entwickelte chirurgische Assistenzsystem ein hilfreiches Werkzeug für den Chirurg bei der Platzierung Position der Prothese während des chirurgischen Eingriffs der TAKI bietet

    Open-source software in medical imaging: development of OsiriX

    Get PDF
    Purpose Open source software (oss) development for medical imaging enables collaboration of individuals and groups to produce high-quality tools that meet user needs. This process is reviewed and illustrated with OsiriX, a fast DICOM viewer program for the Apple Macintosh. Materials and methods OsiriX is an oss for the Apple Macintosh under Mac OS X v10.4 or higher specifically designed for navigation and visualization of multimodality and multidimensional images: 2D Viewer, 3D Viewer, 4D Viewer (3D series with temporal dimension, for example: Cardiac-CT) and 5D Viewer (3D series with temporal and functional dimensions, for example: Cardiac-PET-CT). The 3D Viewer offers all modern rendering modes: multiplanar reconstruction, surface rendering, volume rendering and maximum Intensity projection. All these modes support 4D data and are able to produce image fusion between two different series (for example: PET-CT). OsiriX was developed using the Apple Xcode development environment and Cocoa framework as both a DICOM PACS workstation for medical imaging and an image processing software package for medical research (radiology and nuclear imaging), functional imaging, 3D imaging, confocal microscopy and molecular imaging. Results OsiriX is an open source program by Antoine Rosset, a radiologist and software developer, was designed specifically for the needs of advanced imaging modalities. The software program turns an Apple Macintosh into a DICOM PACS workstation for medical imaging and image processing. OsiriX is distributed free of charge under the GNU General Public License and its source code is available to anyone. This system illustrates how open software development for medical imaging tools can be successfully designed, implemented and disseminated. Conclusion oss development can provide useful cost effective tools tailored to specific needs and clinical tasks. The integrity and quality assurance of open software developed by a community of users does not follow the traditional conformance and certification required for commercial medical software programs. However, open software can lead to innovative solutions designed by users better suited for specific task
    corecore