81,969 research outputs found

    An assembly oriented design framework for product structure engineering and assembly sequence planning

    Get PDF
    The paper describes a novel framework for an assembly-oriented design (AOD) approach as a new functional product lifecycle management (PLM) strategy, by considering product design and assembly sequence planning phases concurrently. Integration issues of product life cycle into the product development process have received much attention over the last two decades, especially at the detailed design stage. The main objective of the research is to define assembly sequence into preliminary design stages by introducing and applying assembly process knowledge in order to provide an assembly context knowledge to support life-oriented product development process, particularly for product structuring. The proposed framework highlights a novel algorithm based on a mathematical model integrating boundary conditions related to DFA rules, engineering decisions for assembly sequence and the product structure definition. This framework has been implemented in a new system called PEGASUS considered as an AOD module for a PLM system. A case study of applying the framework to a catalytic-converter and diesel particulate filter sub-system, belonging to an exhaust system from an industrial automotive supplier, is introduced to illustrate the efficiency of the proposed AOD methodology

    A semantic web approach for built heritage representation

    Get PDF
    In a built heritage process, meant as a structured system of activities aimed at the investigation, preservation, and management of architectural heritage, any task accomplished by the several actors involved in it is deeply influenced by the way the knowledge is represented and shared. In the current heritage practice, knowledge representation and management have shown several limitations due to the difficulty of dealing with large amount of extremely heterogeneous data. On this basis, this research aims at extending semantic web approaches and technologies to architectural heritage knowledge management in order to provide an integrated and multidisciplinary representation of the artifact and of the knowledge necessary to support any decision or any intervention and management activity. To this purpose, an ontology-based system, representing the knowledge related to the artifact and its contexts, has been developed through the formalization of domain-specific entities and relationships between them

    On the Interface Between Operations and Human Resources Management

    Get PDF
    Operations management (OM) and human resources management (HRM) have historically been very separate fields. In practice, operations managers and human resource managers interact primarily on administrative issues regarding payroll and other matters. In academia, the two subjects are studied by separate communities of scholars publishing in disjoint sets of journals, drawing on mostly separate disciplinary foundations. Yet, operations and human resources are intimately related at a fundamental level. Operations are the context that often explains or moderates the effects of human resource activities such as pay, training, communications and staffing. Human responses to operations management systems often explain variations or anomalies that would otherwise be treated as randomness or error variance in traditional operations research models. In this paper, we probe the interface between operations and human resources by examining how human considerations affect classical OM results and how operational considerations affect classical HRM results. We then propose a unifying framework for identifying new research opportunities at the intersection of the two fields

    Integrative biological simulation praxis: Considerations from physics, philosophy, and data/model curation practices

    Get PDF
    Integrative biological simulations have a varied and controversial history in the biological sciences. From computational models of organelles, cells, and simple organisms, to physiological models of tissues, organ systems, and ecosystems, a diverse array of biological systems have been the target of large-scale computational modeling efforts. Nonetheless, these research agendas have yet to prove decisively their value among the broader community of theoretical and experimental biologists. In this commentary, we examine a range of philosophical and practical issues relevant to understanding the potential of integrative simulations. We discuss the role of theory and modeling in different areas of physics and suggest that certain sub-disciplines of physics provide useful cultural analogies for imagining the future role of simulations in biological research. We examine philosophical issues related to modeling which consistently arise in discussions about integrative simulations and suggest a pragmatic viewpoint that balances a belief in philosophy with the recognition of the relative infancy of our state of philosophical understanding. Finally, we discuss community workflow and publication practices to allow research to be readily discoverable and amenable to incorporation into simulations. We argue that there are aligned incentives in widespread adoption of practices which will both advance the needs of integrative simulation efforts as well as other contemporary trends in the biological sciences, ranging from open science and data sharing to improving reproducibility.Comment: 10 page

    Review of research in feature-based design

    Get PDF
    Research in feature-based design is reviewed. Feature-based design is regarded as a key factor towards CAD/CAPP integration from a process planning point of view. From a design point of view, feature-based design offers possibilities for supporting the design process better than current CAD systems do. The evolution of feature definitions is briefly discussed. Features and their role in the design process and as representatives of design-objects and design-object knowledge are discussed. The main research issues related to feature-based design are outlined. These are: feature representation, features and tolerances, feature validation, multiple viewpoints towards features, features and standardization, and features and languages. An overview of some academic feature-based design systems is provided. Future research issues in feature-based design are outlined. The conclusion is that feature-based design is still in its infancy, and that more research is needed for a better support of the design process and better integration with manufacturing, although major advances have already been made
    corecore