515 research outputs found

    Sistemas interativos tangíveis e processos de mediação tecnológica: hipóteses sobre agência, significação e cognição a partir da investigação do MIT Tangible Media Group

    Get PDF
    A presente dissertação toma a investigação em sistemas de interação tangível do MIT Tangible Media Group como objeto, a pretexto da sua inclusão na edição de 2016 do Festival Ars Electronica, sob o tema Radical Atoms: The Alchemists of Our Time. Pretende-se compreender quais os pontos de contato da investigação do grupo com os estudos dos media, de forma a localizar a sua relevância para a programação do festival. O enquadramento nos estudos dos media é feito pela localização de um conjunto de termos-chave no trabalho do grupo, os quais evocam questões afetas à fenomenologia, filosofia da tecnologia e mediação tecnológica. Conclui-se que estes sistemas de interação tangível ativam processos particulares de constituição de agência, significação e cognição. Na ausência de outros materiais que explorem estas relações no contexto do festival, a dissertação apresenta-se assim como complemento à leitura do tema Radical Atoms: The Alchemists of Our Time.This dissertation thesis takes the research of the MIT Tangible Media Group as its object, by occasion of its inclusion in the 2016 edition of Ars Electronica Festival under the theme Radical Atoms: The Alchemists of Our Time. The aim is to understand what are the common points between the group's research and media studies, in order to locate this object's relevance to the festival programming scope. The framing within media studies is done by surveying a set of keywords from the group's research, which evoke topics from phenomenology, philosophy of technology and technological mediation. It's concluded that these tangible interactive systems activate specific processes of agency, signification, and cognition. Given the lack of materials which explore these relationships within the context of the festival, the dissertation presents itself as a supplement to the reading of the Radical Atoms: The Alchemists of Our Time theme

    Printed soft optical waveguides for delivering light into deep tissue

    Get PDF
    To implement light-based diagnosis and therapies in the clinic, implantable patient-friendly devices that can deliver light inside the body while being compatible with soft tissues are needed. This Thesis presents the development of optical waveguides for guiding light into tissue, obtained by printing technologies from three different polymer combinations. Firstly, D,L-dithiothreitol (DTT) bridged PEG diacrylate were synthesized and printed into waveguides, which exhibited tunable mechanical properties and degradability, and low optical losses (as low as 0.1 dB cm-1 in visible range). Secondly, degradable waveguides from amorphous poly(D,L-lactide) and derived copolymers were developed by printing, which showed elasticity at body temperature and could guide VIS to NIR light in tissue for tens of centimeters. At last, soft and stretchable optical waveguides consisting of polydimethylsiloxane (PDMS) core and acrylated Pluronic F127 cladding were fabricated by coaxial extrusion printing, which could be stretched to 4 times of their length and showed optical loss values in tissue as low as 0.13 -0.34 dB cm-1 in the range of 405-520 nm. For proof-of-concept, above printed optical waveguides were used to deliver light across 5-8 cm tissue to remotely activate photochemical processes in in vitro cell cultures. The presented work exemplifies how rational study of medically approved biomaterials can lead to useful and cost-effective optical components for light applications.Neue optische Technologien verändern die Zukunft der Medizin und fördern die Entwicklung von Implantaten, die im Körper Licht abgeben. Diese Arbeit beschreibt drei gewebekompatible, optische Wellen¬leiter für medizinische Zwecke, die mit 3D-Extrusionsdruck gefertigt werden. Zum einem wurden Wellen¬leiter mit einstellbaren mechanischen Eigenschaften und kontrollierter Abbaubarkeit im Körper als Funktion des Dithio¬threitol (DTT)-Anteils in DTT-modifizierten Poly¬ethylen¬glykol¬diacrylat-Hydro¬gelen entwickelt. Die bei der Extrusion in-situ-photopolymerisierten Wellen¬leiter haben nur 0,1 dB/cm optischen Verlust im VIS-Bereich und wurden verwendet, um photo¬chemische Prozesse in In-vitro-Zellkulturen zu aktivieren. Zum anderen wurden im Körper abbaubare Wellenleiter aus amorphem Poly(D,L-Lactid) und dessen Copolymeren gedruckt. Diese Wellenleiter sind bei Körpertemperatur elastisch und leiten in mehreren zehn Zentimetern Gewebe Licht vom VIS- bis NIR-Bereich. Schließlich wurden mit koaxialem Extrusions¬druck weiche und dehnbare Wellenleiter hergestellt, die aus einem PDMS-Kern und einer acrylierten Pluronic F127 Hülle bestehen. Diese Wellenleiter sind aufs Vierfache dehnbar und haben in Gewebe nur 0,13 bis 0,34 dB/cm optische Verluste bei 405-520 nm. Die vorgestellte Arbeit zeigt, wie Materialauswahl mit Drucktechnologien kombiniert werden können, um optische Wellenleiter für medizinische Anwendungen mit bemerkenswerter Leistung bei angemessenem Aufwand zu entwickeln

    Advances in Optofluidics

    Get PDF
    Optofluidics a niche research field that integrates optics with microfluidics. It started with elegant demonstrations of the passive interaction of light and liquid media such as liquid waveguides and liquid tunable lenses. Recently, the optofluidics continues the advance in liquid-based optical devices/systems. In addition, it has expanded rapidly into many other fields that involve lightwave (or photon) and liquid media. This Special Issue invites review articles (only review articles) that update the latest progress of the optofluidics in various aspects, such as new functional devices, new integrated systems, new fabrication techniques, new applications, etc. It covers, but is not limited to, topics such as micro-optics in liquid media, optofluidic sensors, integrated micro-optical systems, displays, optofluidics-on-fibers, optofluidic manipulation, energy and environmental applciations, and so on

    A Perspective on Cephalopods Mimicry and Bioinspired Technologies toward Proprioceptive Autonomous Soft Robots

    Get PDF
    Octopus skin is an amazing source of inspiration for bioinspired sensors, actuators and control solutions in soft robotics. Soft organic materials, biomacromolecules and protein ingredients in octopus skin combined with a distributed intelligence, result in adaptive displays that can control emerging optical behavior, and 3D surface textures with rough geometries, with a remarkably high control speed (≈ms). To be able to replicate deformable and compliant materials capable of translating mechanical perturbations in molecular and structural chromogenic outputs, could be a glorious achievement in materials science and in the technological field. Soft robots are suitable platforms for soft multi-responsive materials, which can provide them with improved mechanical proprioception and related smarter behaviors. Indeed, a system provided with a “learning and recognition” functions, and a constitutive “mechanical” and “material intelligence” can result in an improved morphological adaptation in multi-variate environments responding to external and internal stimuli. This review aims to explore challenges and opportunities related to smart and chromogenic responsive materials for adaptive displays, reconfigurable and programmable soft skin, proprioceptive sensing system, and synthetic nervous control units for data processing, toward autonomous soft robots able to communicate and interact with users in open-world scenarios

    Roadmap for optofluidics

    Get PDF
    Optofluidics, nominally the research area where optics and fluidics merge, is a relatively new research field and it is only in the last decade that there has been a large increase in the number of optofluidic. applications, as well as in the number of research groups, devoted to the topic. Nowadays optofluidics applications include, without being limited to, lab-on-a-chip devices, fluid-based and controlled lenses, optical sensors for fluids and for suspended particles, biosensors, imaging tools, etc. The long list of potential optofluidics applications, which have been recently demonstrated, suggests that optofluidic technologies will become more and more common in everyday life in the future, causing a significant impact on many aspects of our society. A characteristic of this research field, deriving from both its interdisciplinary origin and applications, is that in order to develop suitable solutions a. combination of a deep knowledge in different fields, ranging from materials science to photonics, from microfluidics to molecular biology and biophysics,. is often required. As a direct consequence, also being able to understand the long-term evolution of optofluidics research is not. easy. In this article, we report several expert contributions on different topics. so as to provide guidance for young scientists. At the same time, we hope that this document will also prove useful for funding institutions and stakeholders. to better understand the perspectives and opportunities offered by this research field

    Slotted photonic crystal biosensors

    Get PDF
    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them result in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This thesis presents a new platform for optical biosensors, namely slotted photonic crystals, which engender higher sensitivities due to their ability to confine, spatially and temporally, the peak of optical mode within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. High sensitivities were observed in smaller structures than most competing devices in the literature. Initial tests with cellular material for real applications was also performed, and shown to be of promise. In addition, groundwork to make an integrated device that includes the spectrometer function was also carried out showing that slotted photonic crystals themselves can be used for on-chip wavelength specific filtering and spectroscopy, whilst gas-free microvalves for automation were also developed. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study

    Analysis and Classification of Shape-Changing Interfaces for Design and Application-based Research

    Get PDF
    Shape-changing interfaces are physically tangible, interactive devices, surfaces, or spaces that allow for rich, organic, and novel experiences with computational devices. Over the last 15 years, research has produced functional prototypes over many use applications; reviews have identified themes and possible future directions but have not yet looked at possible design or application-based research. Here, we gather this information together to provide a reference for designers and researchers wishing to build upon existing prototyping work, using synthesis and discussion of existing shape-changing interface reviews and comprehensive analysis and classification of 84 shape-changing interfaces. Eight categories of prototype are identified alongside recommendations for the field

    디스플레이 및 이미징 시스템으로의 응용을 위한 3D 프린팅 기반 맞춤형 광학 요소의 개발

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2021. 2. 홍용택.일반적으로 제조 공정은 절삭 방식과 적층 방식으로 구분된다. 이 중에서 적층 방식 공정은 저비용 및 단시간으로 복잡한 형태의 구조를 만들 수 있어서 이에 대한 연구와 개발이 꾸준히 진행되어왔다. 특히 3D 프린팅은 적층 방식 공정 중에서 가장 대표적인 방법으로, 기계 부품 및 생체 기관 제조 등의 분야에서는 이미 상용화가 진행되고 있다. 하지만 전자 소자 및 광학 요소 분야에서의 3D 프린팅의 활용은 여전히 연구 개발 또는 시제품 제작 단계에 머무르고 있다. 특히 마이크로 렌즈, 컬러 필터 등이 3D 프린팅으로 응용할 수 있는 가장 가능성 있는 광학 요소로서 디스플레이 및 이미징 시스템에 널리 사용될 것으로 예상되지만 여전히 상용화를 위한 연구가 진행 중이다. 또한 3D 프린팅을 이용한 광학 요소의 제작은 소재, 길이 스케일, 형상 및 응용 방안 등에서도 제한이 많은 상황이다. 따라서 이러한 문제를 극복하기 위해서는 디스플레이 및 이미징 시스템에서의 3D 프린팅 된 광학 요소의 유용성을 확장해야 하며, 다음과 같이 세 가지 측면에서 향상된 성능을 달성해야 한다. 첫째, 다양한 방식의 3D 프린팅 방법을 통해 마이크로미터에서 센티미터까지 광범위의 길이 스케일을 가지는 구조물의 제작이 가능해야 한다. 둘째, 임의의 곡면, 계층적 구조 등 복잡한 형상의 구조물을 쉽게 제작할 수 있어야 한다. 셋째, 단단한 소재 대신 탄성체와 같은 소프트 소재를 이용하여 광학적인 기능을 용이하게 조절할 수 있어야 한다. 이와 같은 동기를 바탕으로 본 학위 논문에서는 디스플레이 및 이미징 시스템으로의 응용을 위한 3D 프린팅 기반 맞춤형 광학 요소의 개발에 대한 내용을 보고한다. 3D 프린팅 기반 광학 요소를 매크로 스케일, 마이크로 스케일 그리고 매크로 및 마이크로 스케일이 혼합된 계층적 구조 등 세 가지 유형으로 분류하고 각각에 대한 응용 분야를 제시한다. 매크로 스케일의 광학 요소로는 가장 기본적인 요소인 렌즈와 거울을 선택한다. 렌즈는 공압식 디스펜싱 방법을 이용하여 실린드리컬 쌍 형태로 제작되었으며, 심리스 모듈러 평판식 디스플레이의 구현을 위해 적용된다. 또한 용융 적층 방식의 3D 프린팅으로 만들어진 몰드를 이용하여 거울을 제작하고, 이를 이용하여 심리스 모듈러 커브드 엣지 디스플레이를 구현한다. 이와 같이 모듈러 디스플레이의 이음새 부분에 3D 프린팅으로 제작된 렌즈 또는 거울을 부착하는 방식으로 화면을 심리스로 확장하는 기술을 제시하고, 다양한 형태의 디스플레이에 적용할 수 있는 가능성을 보여준다. 마이크로 스케일의 광학 요소로는 발광 다이오드에서 색 변환과 광 추출 기능을 동시에 나타내는 색 변환 마이크로 렌즈를 선택한다. 양자 점/광 경화성 고분자 복합체의 전기수력학적 프린팅을 통해 양자 점이 내장된 다양한 형태의 색 변환 마이크로 렌즈를 제작하며, 이를 청색 마이크로 발광 다이오드 어레이의 발광부 상에 적용하여 풀 컬러 마이크로 발광 다이오드 디스플레이로의 응용 가능성을 제시한다. 마지막으로 매크로 및 마이크로 스케일이 혼합된 계층적 구조의 광학 요소로서 디스펜싱 및 건식 러빙 과정의 조합으로 제작된 겹눈 형태를 모사한 렌즈 구조를 제시한다. 반구 형태의 매크로 렌즈를 디스펜싱으로 형성하고, 매크로 렌즈의 곡면 상에 단층의 마이크로 입자의 배열을 얻기 위해 건식 러빙 공정을 진행한다. 이러한 방식으로 형성된 계층적 구조가 소프트한 소재로 복제되어서 신축성을 가지는 겹눈 형태 모사 구조가 완성된다. 마이크로 렌즈 어레이는 매크로 렌즈의 표면을 따라 형성되고 리지드 아일랜드로 역할을 하여, 전체 계층적 구조에 기계적 변형이 가해져 매크로 렌즈의 모양이 변형되어도 마이크로 렌즈는 형상과 해상도, 초점 거리 등의 광학적 특성을 유지할 수 있다. 본 학위 논문은 3D 프린팅을 이용하여 다양한 형태와 스케일의 광학 요소를 제작하고 디스플레이 및 이미징 시스템으로의 여러 응용을 보여줌으로서 앞으로의 새로운 연구 및 개발 방향성을 제시하는 것을 주요 목적으로 한다. 3D 프린팅 설비의 단가가 낮아지고 정밀도 및 해상도가 높아지는 추세에 따라, 광학 요소를 쉽게 만들고 응용할 수 있는 맞춤형 광학 또는 스스로 구현하는 광학 분야가 변형 가능하고 멀티 스케일의 광학계로 점차 확대될 것으로 예상된다. 궁극적으로는 차세대 디스플레이 및 이미징 시스템에 필요한 광학 요소를 위한 기술의 저변을 넓히고, 이를 산업 전반에 응용할 수 있는 기반을 마련하고자 한다.Generally, the manufacturing process is divided into the subtractive (top-down) type and additive type (bottom-up). Among them, the additive manufacturing process has attracted a lot of attention because it can manufacture products with complex shapes in a low-cost and short-time process. In particular, three-dimensional (3D) printing is a representative method, which has already been commercialized in the field of mechanical components and biomedical organ. However, it remains in the research and development step in the field of electronic devices and optical components. Especially, although 3D printed optical components including microlens and color filter are expected to be widely used in display and imaging systems, it is still under investigation for commercialized products, and there are limitations in terms of materials, length scale, shape, and practical applications of components. Therefore, to overcome these issues, it is required for investigating and expanding the potential usefulness for 3D printed optical components in display and imaging systems to achieve better performance, productivity, and usability in three aspects. First, it should be possible to manufacture structures with a wide range of length scales from micrometer to centimeter through various 3D printing methods. Second, complex shapes such as free-from curved surfaces and hierarchical structures should be easily fabricated. Third, it is necessary to add functionality by manufacturing structures in which tunable functions are introduced using soft materials like an elastomer. Based on the above motivations, 3D printing-based customized optical components for display and imaging system applications are introduced in this dissertation. 3D printed optical components are classified into three types and their applications are showed to verify the scalability of 3D printing: macro-scale, microscale, and hierarchical macro/micro-scale. As macro-scale printed optical components, lens and mirror which are the most basic optical components are selected. The lens is fabricated by a pneumatic-type dispensing method with the form of a cylindrical pair and adopted for demonstration of seamless modular flat panel display. Besides, a seamless modular curved-edge display is also demonstrated with a mirror, which is fabricated from fused deposition modeling (FDM)-type 3D printed mold. By simply attaching a printed lens or mirror onto the seam of the modular display, it is possible to secure seamless screen expansion technology with the various form factor of the display panel. In the case of micro-scale printed optical components, the color-convertible microlens is chosen, which act as a color converter and light extractor simultaneously in a light-emitting diode (LED). By electrohydrodynamic (EHD) printing of quantum dot (QD)/photocurable polymer composite, QD-embedded hemispherical lens shape structures with various sizes are fabricated by adjusting printing conditions. Furthermore, it is applied to a blue micro-LED array for full-color micro-LED display applications. Finally, a tunable bio-inspired compound (BIC) eyes structure with a combination of dispensing and a dry-phase rubbing process is suggested as a hierarchical macro/micro-scale printed optical components. A hemispherical macrolens is formed by the dispensing method, followed by a dry-phase rubbing process for arranging micro particles in monolayer onto the curved surface of the macrolens. This hierarchical structure is replicated in soft materials, which have intrinsic stretchability. Microlens array is formed on the surface of the macrolens and acts as a rigid island, thereby maintaining lens shape, resolution, and focal length even though the mechanical strain is applied to overall hierarchical structures and the shape of the macrolens is changed. The primary purposes of this dissertation are to introduce new concepts of the enabling technologies for 3D printed optical components and to shed new light on them. Optical components can be easily made as 3D printing equipment becomes cheaper and more precise, so the field of Consumer optics or Do it yourself (DIY) optics will be gradually expanded on deformable and multi-scale optics. It is expected that this dissertation can contribute to providing a guideline for utilizing and customizing 3D printed optical components in next-generation display and imaging system applications.Chapter 1. Introduction 1 1.1. Manufacturing Process 1 1.2. Additive Manufacturing 4 1.3. Printed Optical Components 8 1.4. Motivation and Organization of Dissertation 11 Chapter 2. Macro-scale Printed Optical Components 15 2.1. Introduction 15 2.2. Seamless Modular Flat Display with Printed Lens 20 2.2.1. Main Concept 20 2.2.2. Experimental Section 23 2.2.3. Results and Discussion 26 2.3. Seamless Modular Curved-edge Display with Printed Mirror 32 2.3.1. Main Concept 32 2.3.2. Experimental Section 33 2.3.3. Results and Discussion 36 2.4. Conclusion 46 Chapter 3. Micro-scale Printed Optical Components 47 3.1. Introduction 47 3.2. Full-color Micro-LED Array with Printed Color-convertible Microlens 52 3.2.1. Main Concept 52 3.2.2. Experimental Section 54 3.2.3. Results and Discussion 57 3.3. Conclusion 65 Chapter 4. Hierarchical Macro/Micro-scale Printed Optical Components 66 4.1. Introduction 66 4.2. Tunable Bio-inspired Compound Eye with Printing and Dry-phase Rubbing Process 69 4.2.1. Main Concept 69 4.2.2. Experimental Section 71 4.2.3. Results and Discussion 73 4.3. Conclusion 79 Chapter 5. Conclusion 80 5.1. Summary 80 5.2. Limitations and Suggestions for Future Researches 83 References 88 Abstract in Korean (국문 초록) 107Docto
    corecore