4,156 research outputs found

    COCATS 4 Task Force 4: Training in Multimodality Imaging

    Get PDF

    Proteomics in cardiovascular disease: recent progress and clinical implication and implementation

    Get PDF
    Introduction: Although multiple efforts have been initiated to shed light into the molecular mechanisms underlying cardiovascular disease, it still remains one of the major causes of death worldwide. Proteomic approaches are unequivocally powerful tools that may provide deeper understanding into the molecular mechanisms associated with cardiovascular disease and improve its management. Areas covered: Cardiovascular proteomics is an emerging field and significant progress has been made during the past few years with the aim of defining novel candidate biomarkers and obtaining insight into molecular pathophysiology. To summarize the recent progress in the field, a literature search was conducted in PubMed and Web of Science. As a result, 704 studies from PubMed and 320 studies from Web of Science were retrieved. Findings from original research articles using proteomics technologies for the discovery of biomarkers for cardiovascular disease in human are summarized in this review. Expert commentary: Proteins associated with cardiovascular disease represent pathways in inflammation, wound healing and coagulation, proteolysis and extracellular matrix organization, handling of cholesterol and LDL. Future research in the field should target to increase proteome coverage as well as integrate proteomics with other omics data to facilitate both drug development as well as clinical implementation of findings

    Human-based approaches to pharmacology and cardiology: an interdisciplinary and intersectorial workshop.

    Get PDF
    Both biomedical research and clinical practice rely on complex datasets for the physiological and genetic characterization of human hearts in health and disease. Given the complexity and variety of approaches and recordings, there is now growing recognition of the need to embed computational methods in cardiovascular medicine and science for analysis, integration and prediction. This paper describes a Workshop on Computational Cardiovascular Science that created an international, interdisciplinary and inter-sectorial forum to define the next steps for a human-based approach to disease supported by computational methodologies. The main ideas highlighted were (i) a shift towards human-based methodologies, spurred by advances in new in silico, in vivo, in vitro, and ex vivo techniques and the increasing acknowledgement of the limitations of animal models. (ii) Computational approaches complement, expand, bridge, and integrate in vitro, in vivo, and ex vivo experimental and clinical data and methods, and as such they are an integral part of human-based methodologies in pharmacology and medicine. (iii) The effective implementation of multi- and interdisciplinary approaches, teams, and training combining and integrating computational methods with experimental and clinical approaches across academia, industry, and healthcare settings is a priority. (iv) The human-based cross-disciplinary approach requires experts in specific methodologies and domains, who also have the capacity to communicate and collaborate across disciplines and cross-sector environments. (v) This new translational domain for human-based cardiology and pharmacology requires new partnerships supported financially and institutionally across sectors. Institutional, organizational, and social barriers must be identified, understood and overcome in each specific setting
    • …
    corecore