330 research outputs found

    Knowledge-based Engineering in Product Development Processes - Process, IT and Knowledge Management perspectives

    Get PDF
    Product development as a field of practice and research has significantly changed due to the general trends of globalization changing the enterprise landscapes in which products are realized. The access to partners and suppliers with high technological specialization has also led to an increased specialization of original equipment manufacturers (OEMs). Furthermore, the products are becoming increasingly complex with a high functional and technological content and many variants. Combined with shorter lifecycles which require reuse of technologies and solutions, this has resulted in an overall increased knowledge intensity which necessitates a more explicit approach towards knowledge and knowledge management in product development. In parallel, methods and IT tools for managing knowledge have been developed and are more accessible and usable today. One such approach is knowledge-based engineering (KBE), a term that was coined in the mid-1980s as a label for applications which automate the design of rule-driven geometries. In this thesis the term KBE embraces the capture and application of engineering knowledge to automate engineering tasks, regardless of domain of application, and the thesis aims at contributing to a wider utilization of KBE in product development (PD). The thesis focuses on two perspectives of KBE; as a process improvement IT method and as a knowledge management (KM) method. In the first perspective, the lack of explicit regard for the constraints of the product lifecycle management (PLM) architecture, which governs the interaction of processes and IT in PD, has been identified to negatively affect the utilization of KBE in PD processes. In the second perspective, KM theories and models can complement existing methods for identifying potential for KBE applications.Regarding the first perspective, it is concluded that explicit regard for the PLM architecture decreases the need to develop and maintain software code related to hard coded redundant data and functions in the KBE application. The concept of service oriented architecture (SOA) has been found to enable an the explicit regard for the PLM architecture.. Regarding the second perspective, it is concluded that potential for KBE applications is indicated by: 1.) application of certain types of knowledge in PD processes 2.) high maturity and formalization of the applied knowledge 3.) a codification strategy for KM and 4.) an agreement and transparency regarding how the knowledge is applied, captured and transferred. It is also concluded that the formulation of explicit KM strategies in PD should be guided by knowledge application and its relation to strategic objectives focusing on types of knowledge, their role in the PD process and the methods and tools for their application. These, in turn, affect the methods and tools deployed for knowledge capture in order for it to integrate with the processes of knowledge origin. Finally, roles and processes for knowledge transfer have to be transparent to assure the motivation of individuals to engage in the KM strategy

    Knowledge-based Engineering in Product Development Processes - Process, IT and Knowledge Management perspectives

    Get PDF
    Product development as a field of practice and research has significantly changed due to the general trends of globalization changing the enterprise landscapes in which products are realized. The access to partners and suppliers with high technological specialization has also led to an increased specialization of original equipment manufacturers (OEMs). Furthermore, the products are becoming increasingly complex with a high functional and technological content and many variants. Combined with shorter lifecycles which require reuse of technologies and solutions, this has resulted in an overall increased knowledge intensity which necessitates a more explicit approach towards knowledge and knowledge management in product development. In parallel, methods and IT tools for managing knowledge have been developed and are more accessible and usable today. One such approach is knowledge-based engineering (KBE), a term that was coined in the mid-1980s as a label for applications which automate the design of rule-driven geometries. In this thesis the term KBE embraces the capture and application of engineering knowledge to automate engineering tasks, regardless of domain of application, and the thesis aims at contributing to a wider utilization of KBE in product development (PD). The thesis focuses on two perspectives of KBE; as a process improvement IT method and as a knowledge management (KM) method. In the first perspective, the lack of explicit regard for the constraints of the product lifecycle management (PLM) architecture, which governs the interaction of processes and IT in PD, has been identified to negatively affect the utilization of KBE in PD processes. In the second perspective, KM theories and models can complement existing methods for identifying potential for KBE applications.Regarding the first perspective, it is concluded that explicit regard for the PLM architecture decreases the need to develop and maintain software code related to hard coded redundant data and functions in the KBE application. The concept of service oriented architecture (SOA) has been found to enable an the explicit regard for the PLM architecture.. Regarding the second perspective, it is concluded that potential for KBE applications is indicated by: 1.) application of certain types of knowledge in PD processes 2.) high maturity and formalization of the applied knowledge 3.) a codification strategy for KM and 4.) an agreement and transparency regarding how the knowledge is applied, captured and transferred. It is also concluded that the formulation of explicit KM strategies in PD should be guided by knowledge application and its relation to strategic objectives focusing on types of knowledge, their role in the PD process and the methods and tools for their application. These, in turn, affect the methods and tools deployed for knowledge capture in order for it to integrate with the processes of knowledge origin. Finally, roles and processes for knowledge transfer have to be transparent to assure the motivation of individuals to engage in the KM strategy

    Design for Producibility in Fabricated Aerospace Components - A framework for predicting and controlling geometrical variation and weld quality defects during multidisciplinary design

    Get PDF
    In the aerospace industry, weight reduction has been one of the key factors in making aircraft more fuel efficient in order to satisfy environmental demands and increase competitiveness. One strategy adopted by aircraft component suppliers to reduce weight has been fabrication, in which small cast or forged parts are welded together into a final shape. Fabrication increases design freedom due to the possibility of configuring several materials and geometries, which broadens out the design space and allows multioptimization in product weight, performance quality and cost. However, with fabrication, the number of assembly steps and the complexity of the manufacturing process have increased. The use of welding has brought to the forefront important producibility problems related to geometrical variation and weld quality.The goal of this research is to analyze the current situation in industry and academia and propose methods and tools within Engineering Design and Quality Engineering to solve producibility problems involving welded high performance integrated components. The research group “Geometry Assurance and Robust Design” at Chalmers University of Technology, in which this thesis has been produced, has the objective to simulate and foresee geometrical quality problems during the early phases of the product realization process to allow the development of robust concepts and the optimization of tolerances, thus solving producibility problems. Virtual manufacturing is a key within the multidisciplinary design process of aerospace components, in which automated processes analyze broad sets of design variants to trade-off requirements among various disciplines. However, as studied in this thesis, existing methods and tools to analyze producibility do not cover all aspects that define the quality of welded structures. Furthermore, to this day, not all phenomena related to welding can be virtually modelled. Understanding causes and effects still relies on expert judgements and physical experimentation to a great deal. However, when it comes to assessing the capability of many geometrical variants, such an effort might be costly. This deficiency indicates the need for virtual assessment methods and systematic experimentation to analyze the producibility of the design variants and produce process capability data that can be reused in future projects.To fulfill that need, this thesis provides support to designers in assessing producibility by virtually and rapidly predicting the welding quality of a large number of product design variants during the multidisciplinary design space process of fabricated aerospace components.The first step has been to map the fabrication process during which producibility problems might potentially occur. The producibility conceptual model has been proposed to represent the fabrication process in order to understand how variation is originated and propagated. With this representation at hand, a number of methods have been developed and employed to provide support to: 1) Identify and 2) Measure what affects producibility; 3) Analyze the effect of the interaction between factors that affect producibility and 4)Predict producibility. These activities and methods constitute the core of the proposed Design for Producibility framework. This framework combines specialized information about welding problems (know-hows), and inspection, testing and simulation data to systematically predict and evaluate the welding producibility of a set of product design variants. Through this thesis, producibility evaluations are no longer limited to a single geometry and the study of the process parameter window. Instead, a set of geometrical variants within the design space can be analyzed. The results can be used to perform optimization and evaluate trade-offs among different disciplines during design space exploration and analysis, thus supporting the multidisciplinary design process of fabricated (welded) aerospace components

    Computer-controlled autonomous model car: A mechatronics project

    Get PDF
    Mechatronics is a synthesis of mechanical engineering and electronic engineering, and computer engineering, distinct areas that overlap in the design of systems. It represents the interdisciplinary nature of design and development of today\u27s products.;The current research focuses on the design, construction and testing of a computer controlled autonomous model car which can exhibit intelligent behavior such as timed course execution, obstacle detection, and response to sensor inputs. The car is intended as a mechatronics design project that will be integrated into an existing one-semester mechanical engineering undergraduate instrumentation course.;The car was designed around a microprocessor board (Tern Analog Drive) controlled by a 16-bit microcontroller (Tern V104) and equipped with several sensor channels. Two stepper motors were used to propel and guide the car. Photocells were used to detect the path. The control program was written in Turbo C.;The car was tested on a path of reflective white tape about 2 inches wide. The path consists of a 36-inch straight portion followed by a 17-inch radius of curvature curved portion, and completed by a 6-inch straight section with an obstacle at the end. The autonomous car successfully traversed the path and stopped when it detected the obstacle.;It was concluded that a successful mechatronic design project could be developed around the construction and testing of an autonomous car

    An intelligent knowledge based cost modelling system for innovative product development

    Get PDF
    This research work aims to develop an intelligent knowledge-based system for product cost modelling and design for automation at an early design stage of the product development cycle, that would enable designers/manufacturing planners to make more accurate estimates of the product cost. Consequently, a quicker response to customers’ expectations. The main objectives of the research are to: (1) develop a prototype system that assists an inexperienced designer to estimate the manufacturing cost of the product, (2) advise designers on how to eliminate design and manufacturing related conflicts that may arise during the product development process, (3) recommend the most economic assembly technique for the product in order to consider this technique during the design process and provide design improvement suggestions to simplify the assembly operations (i.e. to provide an opportunity for designers to design for assembly (DFA)), (4) apply a fuzzy logic approach to certain cases, and (5) evaluate the developed prototype system through five case studies. The developed system for cost modelling comprises of a CAD solid modelling system, a material selection module, knowledge-based system (KBS), process optimisation module, design for assembly module, cost estimation technique module, and a user interface. In addition, the system encompasses two types of databases, permanent (static) and temporary (dynamic). These databases are categorised into five separate groups of database, Feature database, Material database, Machinability database, Machine database, and Mould database. The system development process has passed through four major steps: firstly, constructing the knowledge-based and process optimisation system, secondly developing a design for assembly module. Thirdly, integrating the KBS with both material selection database and a CAD system. Finally, developing and implementing a ii fuzzy logic approach to generate reliable estimation of cost and to handle the uncertainty in cost estimation model that cannot be addressed by traditional analytical methods. The developed system has, besides estimating the total cost of a product, the capability to: (1) select a material as well as the machining processes, their sequence and machining parameters based on a set of design and production parameters that the user provides to the system, and (2) recommend the most economic assembly technique for a product and provide design improvement suggestion, in the early stages of the design process, based on a design feasibility technique. It provides recommendations when a design cannot be manufactured with the available manufacturing resources and capabilities. In addition, a feature-by-feature cost estimation report was generated using the system to highlight the features of high manufacturing cost. The system can be applied without the need for detailed design information, so that it can be implemented at an early design stage and consequently cost redesign, and longer lead-time can be avoided. One of the tangible advantages of this system is that it warns users of features that are costly and difficult to manufacture. In addition, the system is developed in such a way that, users can modify the product design at any stage of the design processes. This research dealt with cost modelling of both machined components and injection moulded components. The developed cost effective design environment was evaluated on real products, including a scientific calculator, a telephone handset, and two machined components. Conclusions drawn from the system indicated that the developed prototype system could help companies reducing product cost and lead time by estimating the total product cost throughout the entire product development cycle including assembly cost. Case studies demonstrated that designing a product using the developed system is more cost effective than using traditional systems. The cost estimated for a number of products used in the case studies was almost 10 to 15% less than cost estimated by the traditional system since the latter does not take into consideration process optimisation, design alternatives, nor design for assembly issue

    Designing and manufacturing assemblies

    Get PDF

    Proceedings of the 18th International Conference on Engineering Design (ICED11):Book of Abstracts

    Get PDF
    The ICED series of conferences is the Design Society's "flagship" event. ICED11 took place on August 15-18, 2011, at the campus of the Danish Technical University in Lyngby/Copenhagen, Denmark. The Proceedings of the conference are published in 10 individual volumes, arranged according to topics. All volumes of the Proceedings may be purchased individually through Amazon and other on-line booksellers. For members of the Design Society, all papers are available on this website. The Programme and Abstract Book is publically available for download

    The synthesis of variety : developing product families

    Get PDF

    Digital-physical product development:towards a tentative theory

    Get PDF
    corecore